函數(shù)y=(1-x2)
1
2
的值域是
 
考點(diǎn):函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:求出被開放數(shù)的范圍,然后求解函數(shù)的值域.
解答: 解:函數(shù)y=(1-x2)
1
2
=
1-x2
,
∵0≤1-x2≤1,
1-x2
[0,1].
故答案為:[0,1].
點(diǎn)評(píng):本題考查函數(shù)的值域的求法,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U={x|x是小于9的正整數(shù)},A={1,2,3},B={3,4,5,6},則∁U(A∪B)=( 。
A、{3,4,5,6,7,8}
B、{7,8,9}
C、{7,8}
D、{6,7,8,9}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=20.3,b=0.32,c=log20.3,則a,b,c由小到大的順序?yàn)?div id="hhl9llj" class='quizPutTag' contenteditable='true'> 
.(請(qǐng)用“<”連接)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)m>0,n>0,m+n=400,求y=
4
m
+
9
n
的最小值,并指出此時(shí)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lg
1-x
1+x
,如果f(1-a)+f(1-a2)>f(0),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=ln(1+
1
x
)+
1-x
的定義域?yàn)?div id="l77px5f" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=x2+(a+1)2+|x+a-1|(a∈R).
(1)若a為大于2的常數(shù),求函數(shù)y的最小值;
(2)若函數(shù)y的最小值大于3,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下是用二分法求方程x3+3x-5=0的一個(gè)近似解(精確度為0.1)的不完整的過(guò)程,請(qǐng)補(bǔ)充完整.
解:設(shè)函數(shù)f(x)=x3+3x-5,其圖象在(-∞,+∞)上是連續(xù)不斷的,且f(x)在(-∞,+∞)上是單調(diào)遞
 
(增或減).
先求f(0)=
 
,f(1)=
 
,f(2)=
 

所以f(x)在區(qū)間
 
內(nèi)存在零點(diǎn)x0,再填表:
下結(jié)論:
 

(可參考條件:f(1.125)<0,f(1.1875)>0;符號(hào)填+、-)
區(qū)間中點(diǎn)mf(m)符號(hào)區(qū)間長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)loga
1-x
x+1
(0<a<1)在區(qū)間(a,1)上的值域是(1,+∞),則實(shí)數(shù)a的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案