曲線y=sin x在[0,π]上與x軸所圍成的平面圖形的面積為
 
分析:根據(jù)積分的應(yīng)用可知所求的面積為
π
0
sinxdx
,然后根據(jù)積分公式進(jìn)行計(jì)算即可.
解答:解:∵在[0,π],sinx≥0,
∴y=sin x在[0,π]上與x軸所圍成的平面圖形的面積S=
π
0
sinxdx
=(-cosx)|
 
π
0
=-cosπ+cos0=1+1=2.
故答案為:2.
點(diǎn)評(píng):本題主要考查積分的幾何意義,要求熟練掌握常見函數(shù)的積分公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(1)如圖,向量
OA
OB
被矩陣M作用后分別變成
OA/
OB/
,
(Ⅰ)求矩陣M;(Ⅱ)并求y=sin(x+
π
3
)
在M作用后的函數(shù)解析式;
(2)已知在直角坐標(biāo)系x0y內(nèi),直線l的參數(shù)方程為
x=-2+tcos600
y=tsin600
(t為參數(shù))
.以O(shè)x為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos(θ-
π
3
)=
1
2
. 若C與L的交點(diǎn)為P,求點(diǎn)P與點(diǎn)A(-2,0)的距離|PA|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=ln(x+2)+
x2
2
+2x+
1
2
在點(diǎn)A處的切線與曲線y=sin(2x+φ),(-
π
2
<φ<
π
2
)
在點(diǎn)B處的切線相同,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇五校高三下學(xué)期期初教學(xué)質(zhì)量調(diào)研數(shù)學(xué)卷(解析版) 題型:解答題

 

A.(幾何證明選講選做題)

如圖,已知AB為圓O的直徑,BC切圓O于點(diǎn)B,AC交圓O于點(diǎn)PE為線段BC的中點(diǎn).求證:OPPE

B.(矩陣與變換選做題)

已知M,N,設(shè)曲線y=sinx在矩陣MN對(duì)應(yīng)的變換作用下得到曲線F,求F的方程.

C.(坐標(biāo)系與參數(shù)方程選做題)

在平面直角坐標(biāo)系xOy中,直線m的參數(shù)方程為t為參數(shù));在以O為極點(diǎn)、射線Ox為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρsinθ=8cosθ.若直線m與曲線C交于A、B兩點(diǎn),求線段AB的長.

D.(不等式選做題)

設(shè)x,y均為正數(shù),且xy,求證:2x≥2y+3.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線y=ln(x+2)+
x2
2
+2x+
1
2
在點(diǎn)A處的切線與曲線y=sin(2x+φ),(-
π
2
<φ<
π
2
)
在點(diǎn)B處的切線相同,求φ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案