如圖,已知點在圓直徑的延長線上,切圓點,的平分線交于點,交點.

(1)求的度數(shù);(2)若,求.

(1)45°(2)

解析試題分析:(1)由AC為圓O的切線,知∠B=∠EAC.
又DC是∠ACB的平分線,得到∠ACD=∠DCB.
進一步有∠ADF=∠AFD;
由BE為圓O的直徑,得∠DAE=90°,得到∠ADF=.
(2)由已知可得,又,
得到,在中,=tan∠B=tan30°=.
試題解析:(1)∵AC為圓O的切線,∴∠B=∠EAC.
又知DC是∠ACB的平分線,

即∠ADF=∠AFD,又因為BE為圓O的直徑,
.     5分

,又

∴在中,.      10分
考點:圓的幾何性質(zhì),三角形內(nèi)角平分線定理,相似三角形.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知,在邊長為1的正方形ABCD的一邊上取一點E,使AE=AD,從AB的中點F作HF⊥EC于H.

(1)求證:FH=FA;
(2)求EH∶HC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖:是⊙的直徑,是弧的中點,,垂足為于點.

(1)求證:=;
(2)若=4,⊙的半徑為6,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形ABCD是正方形,E是AD上一點,且AE=AD,N是AB的中點,NF⊥CE于F,求證:FN2=EF·FC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知相交于A、B兩點,過A點作切線交于點E,連接EB并延長交于點C,直線CA交于點D,

(1)當點D與點A不重合時(如圖1),證明:ED2=EB·EC;
(2)當點D與點A重合時(如圖2),若BC=2,BE=6,求的直徑長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,圓的圓心的直角邊上,該圓與直角邊相切,與斜邊交于,.

(1)求的長;
(2)求圓的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直線AB為圓的切線,切點為B,點C在圓上,∠ABC的角平分線BE交圓于點E,DB垂直BE交圓于點D.
 
(1)證明:DBDC
(2)設圓的半徑為1,BC,延長CEAB于點F,求△BCF外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,AD、CE是△ABC中邊BC、AB的高,AD和CE相交于點F.

求證:AF·FD=CF·FE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在△ABC中,∠C=90°,∠A=60°,AB=20,過C作△ABC的外接圓的切線CD,BD⊥CD,BD與外接圓交于點E,求DE的長.

查看答案和解析>>

同步練習冊答案