若a,b∈R,i是虛數(shù)單位,且a+(b-1)i=1+i,則
1-bi
ai
對(duì)應(yīng)的點(diǎn)在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:根據(jù)復(fù)數(shù)相等,求出a,b的值,然后利用復(fù)數(shù)的 幾何意義即可得到結(jié)論.
解答: 解:由a+(b-1)i=1+i得a=1且b-1=1,
解得a=1,b=2,
1-bi
ai
=
1-2i
i
=
1
i
-2
=-2-i,對(duì)應(yīng)的坐標(biāo)為(-2,-1)位于第三象限,
故選:C
點(diǎn)評(píng):本題主要考查復(fù)數(shù)的幾何意義,利用復(fù)數(shù)相等求出a,b是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,若S7=14,正數(shù)a,b滿足a+b=a4,則ab的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x, x<1
-x2+3, x≥1
,則f(f(2))=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以拋物線y2=4x的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為中心,離心率為2的雙曲線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于正項(xiàng)數(shù)列{an},定義Hn=
n
a1+2a2+3a3+…+nan
為{an}的“光陰”值,現(xiàn)知某數(shù)列的“光陰”值為Hn=
1
n+2
,則數(shù)列{an}的通項(xiàng)公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
log
1
2
x , x>0
f(x+3) , x≤0
,則f(f(4))=( 。
A、-2B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asinωx(A>0,ω>0)的最小正周期為2,f(
1
3
)=
3
.若將y=f(x)的圖象向左平移
1
3
個(gè)單位后得到函數(shù)y=g(x)的圖象,則(  )
A、g(x)=sin(πx-
π
3
B、g(x)=sin(πx+
π
3
C、g(x)=2sin(πx-
π
3
D、g(x)=2sin(πx+
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知定義在R上的函數(shù)y=f(x)滿足f(x)=f(2-x),且當(dāng)x≠1時(shí),其導(dǎo)函數(shù)f′(x)滿足f′(x)>xf′(x),若a∈(1,2),則( 。
A、f(log2a)<f(2a)<f(2)
B、f(2a)<f(2)<f(log2a)
C、f(log2a)<f(2)<f(2a
D、f(2)<f(log2a)<f(2a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某人射擊一次,其中命中7~10環(huán)的概率表:
命中環(huán)數(shù) 7 8 9 10
概率 0.32 0.28 0.18 0.12
(1)求射擊一次,至少命中8環(huán)的概率;
(2)求射擊一次,命中的環(huán)數(shù)不到9環(huán)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案