已知直線l1:y=3x,l2:y=
1
2
x如圖,在第一象限內(nèi),在l1上從左至右,從下至上依次取點(diǎn)A1,A2,A3,…,An,在l2上從左至右,從下至上依次取點(diǎn)B1,B2,B3,…,Bn,若記S A1OB1=S1,S A2OB2=S2,…,S AnOBn=Sn,….
(1)求∠A1OB1的大小;
(2)再記S A1OB2=S1′,S A2OB1=S2′,試比較S1+S2與S1′+S2′的大小關(guān)系.
考點(diǎn):數(shù)列與函數(shù)的綜合
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用差角的正切公式,即可求∠A1OB1的大;
(2)利用三角形的面積公式,結(jié)合作差比較法,即可得出結(jié)論.
解答: 解:(1)由題意,tan∠A1OB1=
3-
1
2
1+3×
1
2
=1,∴∠A1OB1=45°;
(2)由三角形的面積公式可得:S1+S2=
1
2
×
2
2
(|OA1||OB1|+|OA2||OB2|);
S1′+S2′=
1
2
×
2
2
(|OA1||OB2|+|OA2||OB1|),
∵(|OA1||OB1|+|OA2||OB2|)-(|OA1||OB2|+|OA2||OB1|)=(|OA1|-|OA2|)(|OB1|-|OB2|),
|OA1|<|OA2|,|OB1|<|OB2|,
∴(|OA1||OB1|+|OA2||OB2|)-(|OA1||OB2|+|OA2||OB1|)>0,
∴S1+S2>S1′+S2′.
點(diǎn)評:本題考查差角的正切公式,考查三角形的面積公式,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ=-
12
13
,θ∈(-
π
2
,0),則cos(θ-
π
4
)的值為( 。
A、-
7
2
26
B、
7
2
26
C、-
17
2
26
D、
17
2
26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求值(0.064) -
1
3
-(-
7
8
0+[(-2)3] -
4
3
+lg
1
100
+ln
e
+21+log23
(2)如圖是賓川四中高一年級舉辦的演講比賽上,七位評委為某選手打出的分?jǐn)?shù)的莖葉統(tǒng)計圖,求這位同學(xué)的最后得分的方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求右焦點(diǎn)坐標(biāo)是(2,0),且經(jīng)過點(diǎn)(-2,-
2
)的橢圓的標(biāo)準(zhǔn)方程.
(2)已知雙曲線與橢圓
x2
49
+
y2
24
=1共焦點(diǎn),且以y=±
4
3
x為漸近線,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=blnx,g(x)=ax2-x(a∈R).
(1)若曲線f(x)與g(x)在公共點(diǎn)A(1,0)處有相同的切線,求實(shí)數(shù)a,b的值;
(2)若b=1,設(shè)函數(shù)u(x)=g(x)-f(x),試討論函數(shù)u(x)的單調(diào)性;
(3)若a=1,b>2e,求方程f(x)-g(x)=x在區(qū)間(1,eb)內(nèi)實(shí)根的個數(shù)(其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)解不等式|x2-9|≤x+3.
(2)設(shè)x,y,z∈R+且x+2y+3z=1,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2•3x+a
3x+1+b
是定義在R上的奇函數(shù).
(1)求實(shí)數(shù)a,b的值;
(2)若存在實(shí)數(shù)m,n,使n<f(x)<m對任意的實(shí)數(shù)x都成立,求m-n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
OA
OB
是不共線的向量,若A,B,P三點(diǎn)共線,求證:存在實(shí)數(shù)x,y使
OP
=x
OA
+y
OB
且x+y=1,反之成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題P:關(guān)于x的不等式x2+(a-1)x+a2≤0的解集為空集.命題Q:函數(shù)y=(2a2-a)x為增函數(shù).P、Q中有且只有一個是真命題,求a的范圍.

查看答案和解析>>

同步練習(xí)冊答案