已知數(shù)列{an}滿足:a1=3,,n∈N*.
(Ⅰ)證明數(shù)列為等比數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=an(an+1-2),數(shù)列{bn}的前n項和為Sn,求證:Sn<2.
【答案】分析:(Ⅰ)根據(jù)已知條件求得為定值,即可證明數(shù)列為等比數(shù)列,再根據(jù)等比數(shù)列通項公式 的求法即可求得數(shù)列{an}的通項公式;
(Ⅱ)由前面求得的an的通項公式求出bn的通項公式,然后求出前n項和Sn的表達(dá)式,即可證明Sn<2.
解答:證明:(Ⅰ)∵,又,
等比數(shù)列,且公比為2,
,
解得
(Ⅱ),
∴當(dāng)n≥2時,
==
點評:本題主要考查了數(shù)列的遞推公式以及數(shù)列與不等式的綜合應(yīng)用,考查了學(xué)生的計算能力和對數(shù)列的綜合掌握,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項和Sn
(3)數(shù)列{an-bn}是否存在最大項,如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊答案