設(shè)函數(shù)f (x)=x3-4xa,0<a<2.若f (x)的三個(gè)零點(diǎn)為x1,x2,x3,且x1x2x3,則
A.x1>-1B.x2<0C.x2>0D.x3>2
C

試題分析:∵函數(shù)f (x)=x3-4x+a,0<a<2,∴f′(x)=3x2-4.令f′(x)=0,得 x=±.∵當(dāng)x<-時(shí),f′(x)>0;在(-,)上,f′(x)<0;在(,+∞)上,f′(x)>0.故函數(shù)在(-∞,-)上是增函數(shù),在(-)上是減函數(shù),在(,+∞)上是增函數(shù).故f(-)是極大值,f()是極小值.再由f (x)的三個(gè)零點(diǎn)為x1,x2,x3,且x1<x2<x3,得 x1<-,-<x2,x3.根據(jù)f(0)=a>0,且f()=a-<0,得>x2>0.∴0<x2<1.故選C.
點(diǎn)評(píng):本題函數(shù)的零點(diǎn)的定義,函數(shù)的零點(diǎn)與方程的根的關(guān)系,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求函數(shù)的極值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)().
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),取得極值.
① 若,求函數(shù)上的最小值;
② 求證:對(duì)任意,都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=2x--aln(x+1),a∈R.
(1)若a=-4,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求y=f(x)的極值點(diǎn)(即函數(shù)取到極值時(shí)點(diǎn)的橫坐標(biāo)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

定義在R上的可導(dǎo)函數(shù)f(x),且f(x)圖像連續(xù),當(dāng)x≠0時(shí), ,則函數(shù)的零點(diǎn)的個(gè)數(shù)為(  )
A.1B.2C.0D.0或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù) 在區(qū)間[-2,2]的最大值為20,求它在該區(qū)間的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)求的極值;
(2)當(dāng)時(shí),求的值域;
(3)設(shè),函數(shù),若對(duì)于任意,總存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)在(1,4)上是減函數(shù),則實(shí)數(shù)的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)為常數(shù))在上有最大值3,那么此函數(shù)在上的最小值為(    )
A.-29B.-37C.-5D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(滿分12分)設(shè)函數(shù)。
(Ⅰ)若在定義域內(nèi)存在,而使得不等式能成立,求實(shí)數(shù)的最小值;
(Ⅱ)若函數(shù)在區(qū)間上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案