精英家教網 > 高中數學 > 題目詳情
在△ABC中,角A,B,C的對邊分別為a,b,c,若(a2+c2-b2)tan B=
3
ac,則角B的值為(  )
分析:由條件利用余弦定理可得 sinB=
3
2
,解得B 的值.
解答:解:在△ABC中,∵(a2+c2-b2)tan B=
3
ac,
由余弦定理可得 2ac•cosB•sinB=
3
ac,
∴sinB=
3
2
,
∴B=
π
3
3
,
故選D.
點評:本題主要考查余弦定理的應用,同角三角函數的基本關系,根據三角函數的值求角,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大。
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習冊答案