【題目】已知函數(shù).
(1)求曲線在處的切線方程,并證明:.
(2)當(dāng)時(shí),方程有兩個(gè)不同的實(shí)數(shù)根,證明:.
【答案】(1);證明見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】
(1)首先求出導(dǎo)函數(shù),利用導(dǎo)數(shù)的幾何意義以及點(diǎn)斜式方程可求切線方程;構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,求出函數(shù)的最小值即證.
(2)為方程的兩根,不妨設(shè),由在上單調(diào)遞增,根據(jù)零點(diǎn)存在性定理可知,存在,使,由,得,由(1)可得,,然后利用分析法即可證出.
解:(1)因?yàn)?/span>,
所以,, 即切線方程:
下證:,
令
在上單調(diào)遞增,且
所以,在遞減,在遞增,
所以.
所以.
(2),為方程的兩根,
不妨設(shè),顯然在上單調(diào)遞增.
且所以存在,使
當(dāng),,遞減;
,,遞增.
由,得,又由(1)知
所以:,
要證:,需證:,即證:
,,即證:.
即:
令
,
在單調(diào)遞增,且.
所以,,在單調(diào)遞增.
所以
所以不等式成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的首項(xiàng)a1=1,前n項(xiàng)和為Sn.設(shè)λ與k是常數(shù),若對(duì)一切正整數(shù)n,均有成立,則稱此數(shù)列為“λ~k”數(shù)列.
(1)若等差數(shù)列是“λ~1”數(shù)列,求λ的值;
(2)若數(shù)列是“”數(shù)列,且an>0,求數(shù)列的通項(xiàng)公式;
(3)對(duì)于給定的λ,是否存在三個(gè)不同的數(shù)列為“λ~3”數(shù)列,且an≥0?若存在,求λ的取值范圍;若不存在,說(shuō)明理由,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線在處切線的斜率為,判斷函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是無(wú)窮數(shù)列.給出兩個(gè)性質(zhì):
①對(duì)于中任意兩項(xiàng),在中都存在一項(xiàng),使;
②對(duì)于中任意項(xiàng),在中都存在兩項(xiàng).使得.
(Ⅰ)若,判斷數(shù)列是否滿足性質(zhì)①,說(shuō)明理由;
(Ⅱ)若,判斷數(shù)列是否同時(shí)滿足性質(zhì)①和性質(zhì)②,說(shuō)明理由;
(Ⅲ)若是遞增數(shù)列,且同時(shí)滿足性質(zhì)①和性質(zhì)②,證明:為等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)、是拋物線上的兩個(gè)不同的點(diǎn),是坐標(biāo)原點(diǎn),若直線與的斜率之積為,則下列結(jié)論正確的是( )
A.
B.以為直徑的圓面積的最小值為
C.直線過(guò)拋物線的焦點(diǎn)
D.點(diǎn)到直線的距離不大于
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)綠色出行,某市推出了新能源分時(shí)租賃汽車,并對(duì)該市市民使用新能源租賃汽車的態(tài)度進(jìn)行調(diào)查,得到有關(guān)數(shù)據(jù)如下表1:
表1
愿意使用新能源租賃汽車 | 不愿意使用新能源租賃汽車 | 總計(jì) | |
男性 | 100 | 300 | |
女性 | 400 | ||
總計(jì) | 400 |
其中一款新能源分時(shí)租賃汽車的每次租車費(fèi)用由行駛里程和用車時(shí)間兩部分構(gòu)成:行駛里程按1元/公里計(jì)費(fèi);用車時(shí)間不超過(guò)30分鐘時(shí),按0.15元/分鐘計(jì)費(fèi);超過(guò)30分鐘時(shí),超出部分按0.20元/分鐘計(jì)費(fèi).已知張先生從家到上班地點(diǎn)15公里,每天上班租用該款汽車一次,每次的用車時(shí)間均在20~60分鐘之間,由于堵車紅綠燈等因素,每次的用車時(shí)間(分鐘)是一個(gè)隨機(jī)變量.張先生記錄了100次的上班用車時(shí)間,并統(tǒng)計(jì)出在不同時(shí)間段內(nèi)的頻數(shù)如下表2:
表2
時(shí)間(分鐘) | (20,30] | (30,40] | (40,50] | (50,60] |
頻數(shù) | 20 | 40 | 30 | 10 |
(1)請(qǐng)補(bǔ)填表1中的空缺數(shù)據(jù),并判斷是否有99.5%的把握認(rèn)為該市市民對(duì)新能源租賃汽車的使用態(tài)度與性別有關(guān);
(2)根據(jù)表2中的數(shù)據(jù),將各時(shí)間段發(fā)生的頻率視為概率,以各時(shí)間段的區(qū)間中點(diǎn)值代表該時(shí)間段的取值,試估計(jì)張先生租用一次該款汽車上班的平均用車時(shí)間;
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù),則下列說(shuō)法正確的是( )
A.若,則的圖象上存在唯一一對(duì)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)
B.存在實(shí)數(shù)使得的圖象上存在兩對(duì)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)
C.不存在實(shí)數(shù)使得的圖象上存在兩對(duì)關(guān)于軸對(duì)稱的點(diǎn)
D.若的圖象上存在關(guān)于軸對(duì)稱的點(diǎn),則
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《周髀算經(jīng)》有這樣一個(gè)問(wèn)題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個(gè)節(jié)氣日影長(zhǎng)減等寸,雨水、驚蟄、春分、清明日影之和為三丈二尺,前七個(gè)節(jié)氣日影之和為七丈三尺五寸,問(wèn)立夏日影長(zhǎng)為( )
A.七尺五寸B.六尺五寸C.五尺五寸D.四尺五寸
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱臺(tái)中,底面是菱形,底面,且60°,,是棱的中點(diǎn).
(1)求證:;
(2)求直線與平面所成線面角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com