已知函數(shù)的圖象過(guò)點(diǎn)P(0,2),且在點(diǎn)M(-1,)處的切線方程。
(1)求函數(shù)的解析式;   
(2)求函數(shù)的圖像有三個(gè)交點(diǎn),求的取值范圍。

(1);(2)

解析試題分析:(1)將點(diǎn)代入函數(shù)解析式可得的值,將代入直線可得的值,再由切線方程可知切線的斜率為6,由導(dǎo)數(shù)的幾何意義可知即,解由組成的方程組可得的值。(2)可將問題轉(zhuǎn)化為有三個(gè)不等的實(shí)根問題,將整理變形可得,令,則的圖像與圖像有三個(gè)交點(diǎn)。然后對(duì)函數(shù)求導(dǎo),令導(dǎo)數(shù)等于0求其根。討論導(dǎo)數(shù)的符號(hào),導(dǎo)數(shù)正得增區(qū)間,導(dǎo)數(shù)負(fù)得減區(qū)間,根據(jù)函數(shù)的單調(diào)性得函數(shù)的極值,數(shù)形結(jié)合分析可得出的取值范圍。
(1)由的圖象經(jīng)過(guò)點(diǎn),知。
所以,則 
由在處的切線方程是,即。所以解得。 
故所求的解析式是。    
(2)因?yàn)楹瘮?shù)的圖像有三個(gè)交點(diǎn)
所以有三個(gè)根 
有三個(gè)根
,則的圖像與圖像有三個(gè)交點(diǎn)。 
接下來(lái)求的極大值與極小值(表略)。
的極大值為 的極小值為 
因此
考點(diǎn):1導(dǎo)數(shù)的幾何意義;2用導(dǎo)數(shù)研究函數(shù)的圖像及性質(zhì)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)f(x)=ax3+3x2+3x(a≠0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)在區(qū)間(1,2)是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)為常數(shù),e=2.71828…是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與x軸平行.
(1)求k的值,并求的單調(diào)區(qū)間;
(2)設(shè),其中的導(dǎo)函數(shù).證明:對(duì)任意

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x3-4x2+5x-4.
(1)求曲線f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)求經(jīng)過(guò)點(diǎn)A(2,-2)的曲線f(x)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx+a2(a,b∈R).
(1)若函數(shù)f(x)在x=1處有極值10,求b的值;
(2)若對(duì)于任意的a∈[-4,+∞),f(x)在x∈[0,2]上單調(diào)遞增,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)R),為其導(dǎo)函數(shù),且時(shí)有極小值
(1)求的單調(diào)遞減區(qū)間;
(2)若,當(dāng)時(shí),對(duì)于任意x,的值至少有一個(gè)是正數(shù),求實(shí)數(shù)m的取值范圍;
(3)若不等式為正整數(shù))對(duì)任意正實(shí)數(shù)恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)處取得極值-2.
(1)求函數(shù)的解析式;
(2)求曲線在點(diǎn)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)若時(shí)有極值,求實(shí)數(shù)的值和的極大值;
(2)若在定義域上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)。
(1)若,求的單調(diào)區(qū)間;
(2)若當(dāng)時(shí),,求a的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案