【題目】已知{an}是一個公差大于0的等差數(shù)列,且滿足a3a6=55,a2+a7=16.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)等比數(shù)列{bn}滿足:b1=a1 , b2=a2﹣1,若數(shù)列cn=anbn , 求數(shù)列{cn}的前n項和Sn

【答案】解:(Ⅰ)設等差數(shù)列{an}的公差為d,則依題設d>0
由a2+a7=16.得2a1+7d=16
由a3a6=55得(a1+2d)(a1+5d)=55
由①得2a1=16﹣7d將其代入②得(16﹣3d)(16+3d)=220.
即256﹣9d2=220
∴d2=4,又d>0
∴d=2,代入①得a1=1,∴an=1+(n﹣1)2=2n﹣1.
(Ⅱ)b1=1,b2=2




兩式相減可得:
=1+2× ﹣(2n﹣1)2n
=2n+1﹣3﹣(2n﹣1)2n

【解析】(Ⅰ)設等差數(shù)列{an}的公差為d,d>0,利用等差數(shù)列的通項表示已知,求解出d,a1 , 結合等差數(shù)列的通項即可求解(Ⅱ)由b1=1,b2=2可求 , ,結合數(shù)列的特點,考慮利用錯位相減求解數(shù)列的和
【考點精析】通過靈活運用等差數(shù)列的通項公式(及其變式)和數(shù)列的前n項和,掌握通項公式:;數(shù)列{an}的前n項和sn與通項an的關系即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐P-ABCD,底面,且底面ABCD是邊長為2的正方形,M、N分別為PB、PC的中點.

1證明:MN//平面PAD;

2若PA與平面ABCD所成的角為,求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=+ax,aR,

(1)討論函數(shù)f(x)的單調區(qū)間;

(2)求證:≥x;

(3)求證:當a≥-2時,x[1,+ ∞),f(x)+lnx≥a+1恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別是a,b,c,若 + =2a,b= ,則△ABC面積是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為1.80元,當用水超過4噸時,超過部分每噸3.00元,某月甲、乙兩戶共交水費y元,已知甲、乙兩戶該月用水量分別為5x噸、3x噸.

(1)y關于x的函數(shù);

(2)若甲、乙兩戶該月共交水費26.4元,分別求出甲、乙兩戶該月的用水量和水費.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解下列關于x的不等式:

(1); (2)x2-ax-2a2≤0(a∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是兩個邊長為2的正三角形,DC=4,O為BD的中點,E為PA的中點.
(Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)求證:OE∥平面PDC;
(Ⅲ)求面PAD與面PBC所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題 “存在”,命題“曲線表示焦點在軸上的橢圓”,命題 曲線表示雙曲線”

1若“”是真命題,求實數(shù)的取值范圍;

2的必要不充分條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某城市氣象部門的數(shù)據(jù)中,隨機抽取100天的空氣質量指數(shù)的監(jiān)測數(shù)據(jù)如表:

空氣質量指數(shù)t

(0,50]

(50,100]

(100,150]

(150,200)

(200,300]

(300,+∞)

質量等級

優(yōu)

輕微污染

輕度污染

中度污染

嚴重污染

天數(shù)K

5

23

22

25

15

10

(1)若該城市各醫(yī)院每天收治上呼吸道病癥總人數(shù)y與當天的空氣質量取整數(shù))存在如下關系 且當t>300時,y>500,估計在某一醫(yī)院收治此類病癥人數(shù)超過200人的概率;

(2)若在(1)中,當t>300時,yt的關系擬合的曲線為,現(xiàn)已取出了10對樣本數(shù)據(jù)(ti,yi)(i=1,2,3,10),且知 試用可線性化的回歸方法,求擬合曲線的表達式.(附:線性回歸方程中, , .)

查看答案和解析>>

同步練習冊答案