【題目】已知橢圓的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形,

直線與以橢圓C的右焦點(diǎn)為圓心,以橢圓的長半軸長為半徑的圓相切.

)求橢圓C的方程;

)設(shè)P為橢圓C上一點(diǎn),若過點(diǎn)的直線與橢圓C相交于不同的兩點(diǎn)ST,

滿足O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.

【答案】

【解析】試題分析:(1)設(shè)橢圓的方程,用待定系數(shù)法求出的值;(2)解決直線和橢圓的綜合問題時(shí)注意:第一步:根據(jù)題意設(shè)直線方程,有的題設(shè)條件已知點(diǎn),而斜率未知;有的題設(shè)條件已知斜率,點(diǎn)不定,可由點(diǎn)斜式設(shè)直線方程.第二步:聯(lián)立方程:把所設(shè)直線方程與橢圓的方程聯(lián)立,消去一個(gè)元,得到一個(gè)一元二次方程.第三步:求解判別式:計(jì)算一元二次方程根.第四步:寫出根與系數(shù)的關(guān)系.第五步:根據(jù)題設(shè)條件求解問題中結(jié)論..

試題解析:()由題意,以橢圓的右焦點(diǎn)為圓心,以橢圓的長半軸長為半徑的圓的方程為,

圓心到直線的距離*

橢圓的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形,

,, 代入(*)式得,

故所求橢圓方程為

)由題意知直線的斜率存在,設(shè)直線方程為,設(shè),

將直線方程代入橢圓方程得:,

設(shè),,則

,

當(dāng),直線軸, 點(diǎn)在橢圓上適合題意;

當(dāng),得

將上式代入橢圓方程得:,

整理得:,由知,,所以

綜上可得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,點(diǎn)在線段上, , ,沿直線翻折成,使點(diǎn)在平面上的射影落在直線上.

)求證:直線平面;

)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市在元旦期間開展優(yōu)惠酬賓活動(dòng),凡購物滿100元可抽獎(jiǎng)一次,滿200元可抽獎(jiǎng)兩次依此類推抽獎(jiǎng)箱中有7個(gè)白球和3個(gè)紅球,其中3個(gè)紅球上分別標(biāo)有10元,10元,20元字樣每次抽獎(jiǎng)要從抽獎(jiǎng)箱中有放回地任摸一個(gè)球,若摸到紅球,根據(jù)球上標(biāo)注金額獎(jiǎng)勵(lì)現(xiàn)金;若摸到白球,沒有任何獎(jiǎng)勵(lì)

)一次抽獎(jiǎng)中,已知摸中了紅球,求獲得20元獎(jiǎng)勵(lì)的概率;

小明有兩次抽獎(jiǎng)機(jī)會(huì),用表示他兩次抽獎(jiǎng)獲得的現(xiàn)金總額,寫出的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列的公比,前n項(xiàng)和為.,且的等差中項(xiàng).

1)求

2)數(shù)列滿足,,求數(shù)列的前2019項(xiàng)和;

3)設(shè),問數(shù)列中是否存在三項(xiàng),它們可以構(gòu)成等差數(shù)列?若存在,請求出一組適合條件的項(xiàng);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題“關(guān)于的不等式對任意恒成立”,命題“函數(shù)在區(qū)間上是增函數(shù)”.

(1)若為真,求實(shí)數(shù)的取值范圍;

(2)若為假,為真,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,且經(jīng)過點(diǎn).

(1)求橢圓方程;

(2)過點(diǎn)的直線與橢圓交于兩個(gè)不同的點(diǎn),求線段的垂直平分線在軸截距的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我校為了讓高一學(xué)生更有效率地利用周六的時(shí)間,在高一新生第一次摸底考試后采取周六到校自主學(xué)習(xí),同時(shí)由班主任老師值班,家長輪流值班.一個(gè)月后進(jìn)行了第一次月考,高一數(shù)學(xué)教研組通過系統(tǒng)抽樣抽取了名學(xué)生,并統(tǒng)計(jì)了他們這兩次數(shù)學(xué)考試的優(yōu)良人數(shù)和非優(yōu)良人數(shù),其中部分統(tǒng)計(jì)數(shù)據(jù)如下:

(1)請畫出這次調(diào)查得到的列聯(lián)表;并判定能否在犯錯(cuò)誤概率不超過的前提下認(rèn)為周六到校自習(xí)對提高學(xué)生成績有效?

(2)從這組學(xué)生摸底考試中數(shù)學(xué)優(yōu)良成績中和第一次月考的數(shù)學(xué)非優(yōu)良成績中,按分層抽樣隨機(jī)抽取個(gè)成績,再從這個(gè)成績中隨機(jī)抽取個(gè),求這個(gè)成績來自同一次考試的概率.

下面是臨界值表供參考:

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線 的左、右焦點(diǎn)分別為,作傾斜角為的直線與軸和雙曲線的右支分別交于兩點(diǎn),若點(diǎn)平分線段,則該雙曲線的離心率是

A. B. C. 2 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計(jì),目前微信用戶已達(dá)10億,2016年,諸多傳統(tǒng)企業(yè)大佬紛紛嘗試進(jìn)入微商渠道,讓這個(gè)行業(yè)不斷地走向正規(guī)化、規(guī)范化.2017年3月25日,第五屆中國微商博覽會(huì)在山東濟(jì)南舜耕國際會(huì)展中心召開,力爭為中國微商產(chǎn)業(yè)轉(zhuǎn)型升級(jí),某品牌飲料公司對微商銷售情況進(jìn)行中期調(diào)研,從某地區(qū)隨機(jī)抽取6家微商一周的銷售金額(單位:百元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).

(1)若銷售金額(單位:萬元)不低于平均值的微商定義為優(yōu)秀微商,其余為非優(yōu)秀微商,根據(jù)莖葉圖推斷該地區(qū)110家微商中有幾家優(yōu)秀?

(2)從隨機(jī)抽取的6家微商中再任取2家舉行消費(fèi)者回訪調(diào)查活動(dòng),求恰有1家是優(yōu)秀微商的概率.

查看答案和解析>>

同步練習(xí)冊答案