已知函數(shù)f(x)=2
3
sin(x+
π
4
)cos(x+
π
4
)-2sin(x+π)sin(x+
2
)

(Ⅰ)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)若將f(x)的圖象向右平移
π
12
個單位得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,
π
2
]
上的最大值和最小值.
分析:(Ⅰ)函數(shù)f(x)解析式第一項利用二倍角的正弦函數(shù)公式化簡,第二項利用誘導(dǎo)公式化簡后再利用二倍角的正弦函數(shù)公式化簡,整理后利用兩角和與差的正弦函數(shù)公式化為一個角的正弦函數(shù),找出ω的值,代入周期公式即可求f(x)的最小正周期,根據(jù)正弦函數(shù)的單調(diào)性即可確定出單調(diào)遞增區(qū)間;
(Ⅱ)利用平移規(guī)律,根據(jù)f(x)得到g(x)解析式,確定出函數(shù)g(x)的值域,即可確定出最大值與最小值.
解答:解:(Ⅰ)f(x)=
3
sin(2x+
π
2
)+2sinxcosx=
3
cos2x+sin2x=2sin(2x+
π
3
),
∵ω=2,∴f(x)的最小正周期為π;
令2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,k∈Z,解得:kπ-
12
≤x≤kπ+
π
12
,k∈Z,
則f(x)單調(diào)遞增區(qū)間為[kπ-
12
,kπ+
π
12
],k∈Z;
(Ⅱ)根據(jù)題意得:g(x)=2sin[2(x-
π
12
)+
π
3
]=2sin(2x+
π
6
),
∵2x+
π
6
∈[
π
6
6
],∴-1≤2sin(2x+
π
6
)≤2,
則f(x)的最大值為2,最小值為-1.
點評:此題考查了兩角和與差的正弦函數(shù)公式,三角函數(shù)的周期性及其求法,正弦函數(shù)的單調(diào)性,以及三角函數(shù)的變換,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-xx+1
;
(1)求出函數(shù)f(x)的對稱中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負(fù)數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數(shù)f(x)的值域和最小正周期;
(2)當(dāng)x∈[0,2π]時,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
ax+1
(a∈R)
的圖象過點(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個零點;
(3)若f(x)+mx>1對一切的正實數(shù)x均成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當(dāng)x=
3
3
時,函數(shù)f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習(xí)冊答案