【題目】直線l1 , l2分別過點A(3 ,2),B( ,6),它們分別繞點A,B旋轉(zhuǎn),但始終保持l1⊥l2 . 若l1與l2的交點為P,坐標(biāo)原點為O,則線段OP長度的取值范圍是( )
A.[3,9]
B.[3,6]
C.[6,9]
D.[9,+∞)

【答案】A
【解析】解:l1⊥l2.若l1與l2的交點為P,

可得P在以AB為直徑的圓上運動,

由點A(3 ,2),B( ,6)可得

圓心C(2 ,4),半徑r= =3,

則|OP|的最小值為|OC|﹣r= ﹣3=3,

|OP|的最大值為|OC|+r= +3=9.

即有線段OP長度的取值范圍是[3,9].

所以答案是:A.

【考點精析】關(guān)于本題考查的圓的標(biāo)準(zhǔn)方程,需要了解圓的標(biāo)準(zhǔn)方程:;圓心為A(a,b),半徑為r的圓的方程才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】利民中學(xué)為了了解該校高一年級學(xué)生的數(shù)學(xué)成績,從高一年級期中考試成績中抽出100名學(xué)生的成績,由成績得到如下的頻率分布直方圖.

根據(jù)以上頻率分布直方圖,回答下列問題:

(1)求這100名學(xué)生成績的及格率;(大于等于60分為及格)

(2)試比較這100名學(xué)生的平均成績和中位數(shù)的大小.(精確到0.1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0),上的點M(1,m)到其焦點F的距離為2,
(Ⅰ)求C的方程;并求其準(zhǔn)線方程;
(II)已知A (1,﹣2),是否存在平行于OA(O為坐標(biāo)原點)的直線L,使得直線L與拋物線C有公共點,且直線OA與L的距離等于 ?若存在,求直線L的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如右圖拋物線頂點在原點,圓(x﹣2)2+y2=22的圓心恰是拋物線的焦點,

(Ⅰ)求拋物線的方程;
(Ⅱ)一直線的斜率等于2,且過拋物線焦點,它依次截拋物線和圓于A、B、C、D四點,求|AB|+|CD|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:y=kx+1(k≠0)與橢圓3x2+y2=a相交于A、B兩個不同的點,記l與y軸的交點為C.
(Ⅰ)若k=1,且|AB|= ,求實數(shù)a的值;
(Ⅱ)若 =2 ,求△AOB面積的最大值,及此時橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某企業(yè)近3年的前7個月的月利潤(單位:百萬元)如下面的折線圖所示:

1)試問這3年的前7個月中哪個月的月平均利潤最高?

2)通過計算判斷這3年的前7個月的總利潤的發(fā)展趨勢;

3)試以第3年的前4個月的數(shù)據(jù)(如下表),用線性回歸的擬合模式估測第38月份的利潤.

月份x

1

2

3

4

利潤y(單位:百萬元)

4

4

6

6

相關(guān)公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】供電部門對某社區(qū)位居民2017年12月份人均用電情況進(jìn)行統(tǒng)計后,按人均用電量分為, , 五組,整理得到如下的頻率分布直方圖,則下列說法錯誤的是

A. 月份人均用電量人數(shù)最多的一組有

B. 月份人均用電量不低于度的有

C. 月份人均用電量為

D. 在這位居民中任選位協(xié)助收費,選到的居民用電量在一組的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C: (m>0)的離心率為 ,A,B分別為橢圓的左、右頂點,F(xiàn)是其右焦點,P是橢圓C上異于A、B的動點.

(1)求m的值及橢圓的準(zhǔn)線方程;
(2)設(shè)過點B且與x軸的垂直的直線交AP于點D,當(dāng)直線AP繞點A轉(zhuǎn)動時,試判斷以BD為直徑的圓與直線PF的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1:4x﹣3y+11=0和直線l2:x=﹣1,拋物線y2=4x上一動點P到直線l1和直線l2的距離之和的最小值是(
A.
B.2
C.
D.3

查看答案和解析>>

同步練習(xí)冊答案