A. | ① | B. | ② | C. | ③④ | D. | ①②③ |
分析 如圖所示,由于a,b是異面直線,可知存在唯一一對平面α∥β,且a?α,b?β.設(shè)不在a,b上的任意一點為P.①若點P∈α或P∈β,則不能夠作直線l與a,b都相交;
②利用反證法和平行公理即可得出.
③過點P一定可作直線l⊥α,利用面面平行和線面垂直的性質(zhì)可得l⊥a,l⊥b.
④利用異面直線所成角定義判斷即可.
解答 解:如圖所示,∵a,b是異面直線,∴存在唯一一對平面α∥β,且a?α,b?β.
設(shè)不在a,b上的任意一點為P.
①若點P∈α或P∈β,則不能夠作直線l與a,b都相交,因此①不正確;
②假設(shè)過點P可作直線l∥a,l∥b,則a∥b,這與已知a,b是異面直線相矛盾.因此假設(shè)不成立,即不存在過點P的直線l與a,b都平行.
因此不正確.
③過點P一定可作直線l⊥α,∵α∥β,a?α,b?β,則l⊥a,l⊥b.
因此正確.
④過P點可作直線與a,b所成角都等于50°.正確.
綜上可知:③④正確.
故選C.
點評 本題考查了異面直線的意義及其性質(zhì)、線面面面平行與垂直的性質(zhì),屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | $\frac{33}{2}$ | D. | $\frac{33}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | 160 | C. | $-\frac{5}{2}$ | D. | -160 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | $(-\frac{1}{e},2{e^2})$ | C. | (0,2e2) | D. | $(-\frac{1}{e},0)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件; | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,4] | B. | [2,4] | C. | [2,+∞) | D. | [4,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com