已知、是橢圓的兩個焦點,為橢圓上一點,且,若的面積為        .
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分12分)
已知橢圓的中心在坐標(biāo)原點,焦點在軸上,橢圓的短軸端點和焦點所組成的四邊形為正方形,短軸長為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線且與橢圓相交于A,B兩點,當(dāng)P是AB的中點時,
求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓o:與橢圓有一個公共點A(0,1),F(xiàn)為橢圓的左焦點,直線AF被圓所截得的弦長為1.
(1)求橢圓方程。
(2)圓o與x軸的兩個交點為C、D,B是橢圓上異于點A的一個動點,在線段CD上是否存在點T,使,若存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知橢圓的離心率為,短軸的長為2.
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)若經(jīng)過點的直線與橢圓交于兩點,滿足,求的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分13分)
已知橢圓,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切。
(1)求橢圓C的方程;
(2)設(shè)軸對稱的任意兩個不同的點,連結(jié)交橢圓
于另一點,證明:直線x軸相交于定點;
(3)在(2)的條件下,過點的直線與橢圓交于、兩點,求的取值
范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題14分)
已知直線與橢圓相交于兩點,為坐標(biāo)原點,
(1)求證:;
(2)如果直線向下平移1個單位得到直線,試求橢圓截直線所得線段的長度。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分12分)
已知橢圓與雙曲線有共同的焦點F1、F2,設(shè)它們在第一象限的交點為P,且
(1)求橢圓的方程;
(2)已知N(0,-1),對于(1)中的橢圓,是否存在斜率為的直線,與橢圓交于不同的兩點A、B,點Q滿足?若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線過橢圓左焦點F1和一個頂點B,則該橢圓的離心率為                                                 (    )
A.            B.             C.          D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的焦距為2,則的值為     .  

查看答案和解析>>

同步練習(xí)冊答案