【題目】為了貫徹落實(shí)黨中央精準(zhǔn)扶貧決策,某市將其低收入家庭的基本情況經(jīng)過統(tǒng)計(jì)繪制如圖,其中各項(xiàng)統(tǒng)計(jì)不重復(fù).若該市老年低收入家庭共有900戶,則下列說法錯(cuò)誤的是( )
A.該市總有 15000 戶低收入家庭
B.在該市從業(yè)人員中,低收入家庭共有1800戶
C.在該市無業(yè)人員中,低收入家庭有4350戶
D.在該市大于18歲在讀學(xué)生中,低收入家庭有 800 戶
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點(diǎn)為,是橢圓上關(guān)于原點(diǎn)對稱的兩個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)的坐標(biāo)為時(shí),的周長恰為.
(1)求橢圓的方程;
(2)過點(diǎn)作直線交橢圓于兩點(diǎn),且 ,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,(,),且的圖象上相鄰兩條對稱軸之間的距離為.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若的內(nèi)角,,的對邊分別為,,,且,,,求,的值及邊上的中線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.
(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)直線上的定點(diǎn)在曲線外且其到上的點(diǎn)的最短距離為,試求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若是的導(dǎo)函數(shù),討論的單調(diào)性;
(2)若(是自然對數(shù)的底數(shù)),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為( )
A. B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求曲線在處的切線方程;
(Ⅱ)若,求證:;
(Ⅲ)當(dāng)時(shí),若關(guān)于的不等式的解集為,且,,求的取值范圍(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)定義:對于函數(shù),若存在,使成立,則稱為函數(shù)的不動(dòng)點(diǎn).如果函數(shù)存在不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知離心率為的橢圓經(jīng)過拋物線的焦點(diǎn),斜率為1的直線經(jīng)過且與橢圓交于兩點(diǎn).
(1)求面積;
(2)動(dòng)直線與橢圓有且僅有一個(gè)交點(diǎn),且與直線分別交于兩點(diǎn),為橢圓的右焦點(diǎn),證明為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com