如圖,在四棱錐P-ABCD中,底面ABCD是矩形,側棱PA垂直于底面,E、F分別是AB、PC的中點.
(1)求證:CD⊥PD;
(2)求證EF∥平面PAD;
(3)當平面PCD與平面ABCD成多大角時,直線EF⊥平面PCD?
證明:(1)∵PA⊥底面ABCD,∴AD是PD在平面ABCD內(nèi)的射影, ∵CD平面ABCD且CD⊥AD,∴CD⊥PD (2)取CD中點G,連EG、FG, ∵E、F分別是AB、PC的中點,∴EG∥AD,FG∥PD ∴平面EFG∥平面PAD,故EF∥平面PAD (3)解:當平面PCD與平面ABCD成45°角時,直線EF⊥面PCD 證明:G為CD中點,則EG⊥CD,由(1)知FG⊥CD,故∠EGF為平面PCD與平面ABCD所成二面角的平面角即∠EGF=45°,從而得∠ADP=45°,AD=AP 由Rt△PAE≌Rt△CBE,得PE=CE 又F是PC的中點,∴EF⊥PC,由CD⊥EG,CD⊥FG,得CD⊥平面EFG,CD⊥EF即EF⊥CD,故EF⊥平面PCD. |
科目:高中數(shù)學 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com