湖北省第十四屆運(yùn)動(dòng)會(huì)紀(jì)念章委托某專營(yíng)店銷售,每枚進(jìn)價(jià)5元,同時(shí)每銷售一枚這種紀(jì)念章需向荊州籌委會(huì)交特許經(jīng)營(yíng)管理費(fèi)2元,預(yù)計(jì)這種紀(jì)念章以每枚20元的價(jià)格銷售時(shí)該店一年可銷售2000枚,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn)每枚紀(jì)念章的銷售價(jià)格在每枚20元的基礎(chǔ)上每減少一元?jiǎng)t增加銷售400枚,而每增加一元?jiǎng)t減少銷售100枚,現(xiàn)設(shè)每枚紀(jì)念章的銷售價(jià)格為元,為整數(shù).
(1)寫出該專營(yíng)店一年內(nèi)銷售這種紀(jì)念章所獲利潤(rùn)(元)與每枚紀(jì)念章的銷售價(jià)格(元)的函數(shù)關(guān)系式(并寫出這個(gè)函數(shù)的定義域);
(2)當(dāng)每枚紀(jì)念章銷售價(jià)格為多少元時(shí),該特許專營(yíng)店一年內(nèi)利潤(rùn)(元)最大,并求出最大值.
(1),定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7f/3/aor991.png" style="vertical-align:middle;" />
(2)當(dāng)時(shí),該特許專營(yíng)店獲得的利潤(rùn)最大為32400元.
解析試題分析:此題主要考查學(xué)生對(duì)函數(shù)模型在實(shí)際問題中應(yīng)用的能力.(1)在此類問題中要注意單價(jià)與銷售量之間的相關(guān)關(guān)系,同時(shí)要注意單價(jià)價(jià)格的取值范圍,必要時(shí)要進(jìn)行分段列式,再根據(jù)題意求解;(2)經(jīng)審題實(shí)際問題是求函數(shù)的最大值,由(1)可知函數(shù)是分段函數(shù),所以要在自變量的各區(qū)間中求出最大值,進(jìn)行比較,從而求出函數(shù)的最大值,再還原回實(shí)際問題的解.
試題解析:(1)依題意
∴,
定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7f/3/aor991.png" style="vertical-align:middle;" /> 6分
(2)∵,]
∴ 當(dāng)時(shí),則,(元)
當(dāng)時(shí),則或24,(元)
綜上:當(dāng)時(shí),該特許專營(yíng)店獲得的利潤(rùn)最大為32400元. 13分
考點(diǎn):1.實(shí)際問題中的函數(shù)建模;2.分段函數(shù)的最值;3.二次函數(shù)的最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)是偶函數(shù)。
(1)求的值;
(2)設(shè)函數(shù),其中實(shí)數(shù)。若函數(shù)與的圖象有且只有一個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了降低能源損耗,某體育館的外墻需要建造隔熱層.體育館要建造可使用年的隔熱層,每厘米厚的隔熱層建造成本為萬元.該建筑物每年的能源消耗費(fèi)用(單位:萬元)與隔熱層厚度(單位:)滿足關(guān)系:(,為常數(shù)),若不建隔熱層,每年能源消耗費(fèi)用為萬元.設(shè)為隔熱層建造費(fèi)用與年的能源消耗費(fèi)用之和.
(1)求的值及的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用達(dá)到最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,是一個(gè)矩形花壇,其中AB=4米,AD=3米.現(xiàn)將矩形花壇擴(kuò)建成一個(gè)更大的矩形花園,要求:B在上,D在上,對(duì)角線過C點(diǎn),且矩形的面積小于64平方米.
(Ⅰ)設(shè)長(zhǎng)為米,矩形的面積為平方米,試用解析式將表示成的函數(shù),并寫出該函數(shù)的定義域;
(Ⅱ)當(dāng)的長(zhǎng)度是多少時(shí),矩形的面積最小?并求最小面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
(Ⅰ)當(dāng),解不等式;
(Ⅱ)當(dāng)時(shí),若,使得不等式成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)令,求關(guān)于的函數(shù)關(guān)系式及的取值范圍;
(Ⅱ)求函數(shù)的值域,并求函數(shù)取得最小值時(shí)的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),如果函數(shù)恰有兩個(gè)不同的極值點(diǎn),,且.
(Ⅰ)證明:;
(Ⅱ)求的最小值,并指出此時(shí)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com