【題目】設(shè)函數(shù)f(x)=emx+x2-mx.
(1)證明:f(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增;
(2)若對(duì)于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范圍.
【答案】(1) 見解析(2) [-1,1].
【解析】試題分析:(1)利用說明函數(shù)為增函數(shù),利用說明函數(shù)為減函數(shù),要注意參數(shù)的討論;(2)由(1)知,對(duì)任意的, 在單調(diào)遞減,在單調(diào)遞增,則恒成立問題轉(zhuǎn)化為最大值和最小值問題.從而求得的取值范圍.
試題解析:(1)證明:∵
∴.
若,則當(dāng)時(shí), , ,
當(dāng)時(shí), ,
若,則當(dāng)時(shí), ,
當(dāng)時(shí), ,
∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
(2)由(1)知,對(duì)任意的, 在上單調(diào)遞減,在上單調(diào)遞增,故在處取得最小值.所以對(duì)于任意, 的充要條件是即①
設(shè)函數(shù),則
當(dāng)時(shí), ;當(dāng)時(shí),
∴在上單調(diào)遞減,在上單調(diào)遞增.
又∵,
∴當(dāng)時(shí),
當(dāng)時(shí), , ,即①式成立;
當(dāng)時(shí), ,即;
當(dāng)時(shí), ,即
綜上, 的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ex- (x<0)與g(x)=x2+ln(x+a)圖象上存在關(guān)于y軸對(duì)稱的點(diǎn),則a的取值范圍是( )
A. (-∞,) B. (-∞,)
C. (-, ) D. (-, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中, , , , 是的中點(diǎn), 是線段上一個(gè)動(dòng)點(diǎn),且,如圖所示,沿將翻折至,使得平面平面.
(1)當(dāng)時(shí),證明: 平面;
(2)是否存在,使得三棱錐的體積是?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1上任意一點(diǎn)M到直線l:y=4的距離是它到點(diǎn)F(0,1)距離的2倍;曲線C2是以原點(diǎn)為頂點(diǎn),F為焦點(diǎn)的拋物線.
(1)求C1,C2的方程;
(2)設(shè)過點(diǎn)F的直線與曲線C2相交于A,B兩點(diǎn),分別以A,B為切點(diǎn)引曲線C2的兩條切線l1,l2,設(shè)l1,l2相交于點(diǎn)P,連接PF的直線交曲線C1于C,D兩點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“過大年,吃水餃”是我國(guó)不少地方過春節(jié)的一大習(xí)俗,2018年春節(jié)前夕, 市某質(zhì)檢部門隨機(jī)抽取了100包某種品牌的速凍水餃,檢測(cè)其某項(xiàng)質(zhì)量指標(biāo).
(1)求所抽取的100包速凍水餃該項(xiàng)質(zhì)量指標(biāo)值的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)①由直方圖可以認(rèn)為,速凍水餃的該項(xiàng)質(zhì)量指標(biāo)值服從正態(tài)分布,利用該正態(tài)分布,求落在內(nèi)的概率;
②將頻率視為概率,若某人從某超市購(gòu)買了4包這種品牌的速凍水餃,記這4包速凍水餃中這種質(zhì)量指標(biāo)值位于內(nèi)的包數(shù)為,求的分布列和數(shù)學(xué)期望.
附:①計(jì)算得所抽查的這100包速凍水餃的質(zhì)量指標(biāo)的標(biāo)準(zhǔn)差為;
②若,則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)及函數(shù)
(1)若,求的單調(diào)區(qū)間;
(2)設(shè)集合,使在上恒成立的的取值范圍記作集合,求證: 是的真子集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,圓的圓心為.已知點(diǎn),且為圓上的動(dòng)點(diǎn),線段的中垂線交于點(diǎn).
(Ⅰ)求點(diǎn)的軌跡方程;
(Ⅱ)設(shè)點(diǎn)的軌跡為曲線,拋物線: 的焦點(diǎn)為., 是過點(diǎn)互相垂直的兩條直線,直線與曲線交于, 兩點(diǎn),直線與曲線交于, 兩點(diǎn),求四邊形面積的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com