(本小題滿分12分)

已知橢圓C:的離心率為,A,B分別為橢圓的長(zhǎng)軸和短軸的端點(diǎn),M為AB的中點(diǎn),O為坐標(biāo)原點(diǎn),且.

(Ⅰ)求橢圓的方程;

(Ⅱ)過(guò)的直線與橢圓交于P、Q兩點(diǎn),求POQ的面積的最大時(shí)直線的方程。

 

【答案】

(1);(2)當(dāng)直線的方程為時(shí),面積最大.

【解析】離心率為,列式,,M為AB的中點(diǎn),O為坐標(biāo)原點(diǎn),且.三式求解;(Ⅱ)過(guò)的直線與橢圓交于P、Q兩點(diǎn),求POQ的面積的最大,考查的是弦長(zhǎng)公式,點(diǎn)到直線的距離,列出關(guān)于POQ的面積公式,均值定理求解。

解:(Ⅰ)設(shè)橢圓的半焦距為,則,解得,所以橢圓的方程為.                                             ----------4分                                                                 

(Ⅱ)方法一:設(shè)交點(diǎn),

當(dāng)直線的斜率不存在時(shí),直線的方程為,

則易得.                                                  --------------6分

當(dāng)直線的斜率存在時(shí),設(shè)其方程為),聯(lián)立橢圓方程,得,兩個(gè)根為 

恒成立,                ---------7分

,

又原點(diǎn)到直線的距離=,                            --------------8分

所以

                                           --------------11分

所以,當(dāng)直線的方程為時(shí),面積最大.              --------------12分

方法二:設(shè)交點(diǎn),,

當(dāng)直線的斜率不存在時(shí),直線的方程為,

則易得.                                                    ----------6分

當(dāng)直線的斜率存在時(shí),設(shè)其方程為),聯(lián)立橢圓方程,得

,兩個(gè)根為,

恒成立,,                  -----------7分

                      ---------------8分

        =

                                             ---------11分

所以,當(dāng)直線的方程為時(shí),面積最大.                 -----------12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過(guò)點(diǎn)M作MM1丄y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬(wàn)元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫(xiě)出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案