對(duì)于函數(shù),下列性質(zhì)正確的有      

A.對(duì)于xÎ R,都有f(x)=f(2x)

B.在(¥ ,0)上函數(shù)f(x)單調(diào)遞減 

C.在(0,+¥ )上函數(shù)f(x)單調(diào)遞增 

D.f(0)不是函數(shù)f(x)的最小值

(請(qǐng)把正確的序號(hào)都填上,不能多填也不能少填)

答案:ABD
解析:

ABD

驗(yàn)證A.,

∴A正確.的對(duì)稱(chēng)軸為x=1.所以f(x)(¥0)上單調(diào)遞減,在上單調(diào)遞增.

∴B正確,C錯(cuò)誤.函數(shù)的最小值f(1)=0

∴D正確.∴正確的為ABD.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•閘北區(qū)一模)假設(shè)你已經(jīng)學(xué)習(xí)過(guò)指數(shù)函數(shù)的基本性質(zhì)和反函數(shù)的概念,但還沒(méi)有學(xué)習(xí)過(guò)對(duì)數(shù)的相關(guān)概念.由指數(shù)函數(shù)f(x)=ax(a>0且a≠1)在實(shí)數(shù)集R上是單調(diào)函數(shù),可知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)存在反函數(shù)y=f-1(x),x∈(0,+∞).請(qǐng)你依據(jù)上述假設(shè)和已知,在不涉及對(duì)數(shù)的定義和表達(dá)形式的前提下,證明下列命題:
(1)對(duì)于任意的正實(shí)數(shù)x1,x2,都有f-1(x1x2)=f-1(x1)+f-1(x2);
(2)函數(shù)y=f-1(x)是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

假設(shè)你已經(jīng)學(xué)習(xí)過(guò)指數(shù)函數(shù)的基本性質(zhì)和反函數(shù)的概念,但還沒(méi)有學(xué)習(xí)過(guò)對(duì)數(shù)的相關(guān)概念.由指數(shù)函數(shù)f(x)=ax(a>0且a≠1)在實(shí)數(shù)集R上是單調(diào)函數(shù),可知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)存在反函數(shù)y=f-1(x),x∈(0,+∞).請(qǐng)你依據(jù)上述假設(shè)和已知,在不涉及對(duì)數(shù)的定義和表達(dá)形式的前提下,證明下列命題:
(1)對(duì)于任意的正實(shí)數(shù)x1,x2,都有f-1(x1x2)=數(shù)學(xué)公式;
(2)函數(shù)y=f-1(x)是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:閘北區(qū)一模 題型:解答題

假設(shè)你已經(jīng)學(xué)習(xí)過(guò)指數(shù)函數(shù)的基本性質(zhì)和反函數(shù)的概念,但還沒(méi)有學(xué)習(xí)過(guò)對(duì)數(shù)的相關(guān)概念.由指數(shù)函數(shù)f(x)=ax(a>0且a≠1)在實(shí)數(shù)集R上是單調(diào)函數(shù),可知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)存在反函數(shù)y=f-1(x),x∈(0,+∞).請(qǐng)你依據(jù)上述假設(shè)和已知,在不涉及對(duì)數(shù)的定義和表達(dá)形式的前提下,證明下列命題:
(1)對(duì)于任意的正實(shí)數(shù)x1,x2,都有f-1(x1x2)=f-1(x1)+f-1(x2)
(2)函數(shù)y=f-1(x)是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年上海市閘北區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

假設(shè)你已經(jīng)學(xué)習(xí)過(guò)指數(shù)函數(shù)的基本性質(zhì)和反函數(shù)的概念,但還沒(méi)有學(xué)習(xí)過(guò)對(duì)數(shù)的相關(guān)概念.由指數(shù)函數(shù)f(x)=ax(a>0且a≠1)在實(shí)數(shù)集R上是單調(diào)函數(shù),可知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)存在反函數(shù)y=f-1(x),x∈(0,+∞).請(qǐng)你依據(jù)上述假設(shè)和已知,在不涉及對(duì)數(shù)的定義和表達(dá)形式的前提下,證明下列命題:
(1)對(duì)于任意的正實(shí)數(shù)x1,x2,都有f-1(x1x2)=;
(2)函數(shù)y=f-1(x)是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)具有下列性質(zhì):①;②;③上為增函數(shù).對(duì)于下述命題,正確命題的個(gè)數(shù)為

為周期函數(shù)且最小正周期為4

的圖象關(guān)于y軸對(duì)稱(chēng)且對(duì)稱(chēng)軸只有一條

上為減函數(shù)

A.0         B.1         C.2         D. 3

查看答案和解析>>

同步練習(xí)冊(cè)答案