【題目】(1)是否存在實(shí)數(shù),使得等式 對(duì)于一切正整數(shù)都成立?若存在,求出,的值并給出證明;若不存在,請(qǐng)說明理由.

(2)求證:對(duì)任意的,.

【答案】(1)見解析; (2)見解析.

【解析】

(1)對(duì)n進(jìn)行賦值,代入,求解方程組可求,證明使用數(shù)學(xué)歸納法;

2)利用數(shù)學(xué)歸納法的步驟證明.

(1)在等式

①;令②;

③;由①②③解得

對(duì)于都有 成立.

下面用數(shù)學(xué)歸納法證明:對(duì)一切正整數(shù),式都成立.

①當(dāng)時(shí),由上所述知式成立;

②假設(shè)當(dāng)時(shí)式成立,

,

那么當(dāng)時(shí),

綜上:由①②得對(duì)一切正整數(shù),式都成立,所以存在時(shí)題設(shè)的等

式對(duì)于一切正整數(shù)都成立.

(2)證明:

①當(dāng)時(shí),左式,右式,所以左式<右式,則時(shí)不等式成立;

②假設(shè)當(dāng)時(shí)不等式成立,即,

那么當(dāng)時(shí),

下面證明當(dāng)時(shí),.

設(shè) ,則所以上單調(diào)增,所以時(shí),.

因?yàn)?/span>,所以

因?yàn)?/span>

所以

那么時(shí)不等式也成立.

綜上:由①②可得對(duì)任意 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)在一部向下運(yùn)行的手扶電梯終點(diǎn)的正上方豎直懸掛一幅廣告畫.如圖,該電梯的高AB為4米,它所占水平地面的長(zhǎng)AC為8米.該廣告畫最高點(diǎn)E到地面的距離為10.5米,最低點(diǎn)D到地面的距離6.5米.假設(shè)某人的眼睛到腳底的距離MN為1.5米,他豎直站在此電梯上觀看DE的視角為θ

(1)設(shè)此人到直線EC的距離為x米,試用x表示點(diǎn)M到地面的距離;

(2)此人到直線EC的距離為多少米時(shí),視角θ最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是奇函數(shù).

(1)求實(shí)數(shù)的值;

(2)求函數(shù)上的值域;

(3)令,求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,GH是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在GH上的一點(diǎn)B的正北方向的A處建設(shè)一倉(cāng)庫(kù),設(shè),并在公路北側(cè)建造邊長(zhǎng)為的正方形無頂中轉(zhuǎn)站CDEF(其中EF在GH上),現(xiàn)從倉(cāng)庫(kù)A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且.

(1)求關(guān)于的函數(shù)解析式,并求出定義域;

(2)如果中轉(zhuǎn)站四堵圍墻造價(jià)為10萬(wàn)元/km,兩條道路造價(jià)為30萬(wàn)元/km,問:取何值時(shí),該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價(jià)M最低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電力公司在工程招標(biāo)中是根據(jù)技術(shù)、商務(wù)、報(bào)價(jià)三項(xiàng)評(píng)分標(biāo)準(zhǔn)進(jìn)行綜合評(píng)分的,按照綜合得分的高低進(jìn)行綜合排序,綜合排序高者中標(biāo)。分值權(quán)重表如下:

總分

技術(shù)

商務(wù)

報(bào)價(jià)

100%

50%

10%

40%

技術(shù)標(biāo)、商務(wù)標(biāo)基本都是由公司的技術(shù)、資質(zhì)、資信等實(shí)力來決定的。報(bào)價(jià)表則相對(duì)靈活,報(bào)價(jià)標(biāo)的評(píng)分方法是:基準(zhǔn)價(jià)的基準(zhǔn)分是68分,若報(bào)價(jià)每高于基準(zhǔn)價(jià)1%,則在基準(zhǔn)分的基礎(chǔ)上扣0.8分,最低得分48分;若報(bào)價(jià)每低于基準(zhǔn)價(jià)1%,則在基準(zhǔn)分的基礎(chǔ)上加0.8分,最高得分為80分。若報(bào)價(jià)低于基準(zhǔn)價(jià)15%以上(不含15%)每再低1%,在80分在基礎(chǔ)上扣0.8分。在某次招標(biāo)中,若基準(zhǔn)價(jià)為1000(萬(wàn)元)。甲、乙兩公司綜合得分如下表:

公司

技術(shù)

商務(wù)

報(bào)價(jià)

80分

90分

70分

100分

甲公司報(bào)價(jià)為1100(萬(wàn)元),乙公司的報(bào)價(jià)為800(萬(wàn)元)則甲,乙公司的綜合得分,分別是

A. 7375.4 B. 73,80 C. 74.6,76 D. 74.6 ,75.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,點(diǎn)E,FG分別為棱AB,AA1,C1D1的中點(diǎn).下列結(jié)論中,正確結(jié)論的序號(hào)是______

①過E,FG三點(diǎn)作正方體的截面,所得截面為正六邊形;

B1D1∥平面EFG;

BD1⊥平面ACB1;

④異面直線EFBD1所成角的正切值為

⑤四面體ACB1D1的體積等于a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,三點(diǎn)中恰有二點(diǎn)在橢圓上,且離心率為。

(1)求橢圓的方程;

(2)設(shè)為橢圓上任一點(diǎn), 為橢圓的左右頂點(diǎn), 中點(diǎn),求證:直線與直線它們的斜率之積為定值;

(3)若橢圓的右焦點(diǎn)為,過的直線與橢圓交于,求證:直線與直線斜率之和為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)部門隨機(jī)抽測(cè)生產(chǎn)某種零件的工人的日加工零件數(shù)(單位:件),其中A車間13人,B車間12人,獲得數(shù)據(jù)如下:

根據(jù)上述數(shù)據(jù)得到樣本的頻率分布表如下:

分組

頻數(shù)

頻率

[2530]

3

0.12

30,35]

5

0.20

3540]

8

0.32

40,45]

n1

f1

45,50]

n2

f2

1)確定樣本頻率分布表中n1、n2、f1f2的值;

2)現(xiàn)從日加工零件數(shù)落在(4045]的工人中隨機(jī)選取兩個(gè)人,求這兩個(gè)人中至少有一個(gè)來自B車間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|xa|-x(a>0).

(1)若a=3,解關(guān)于x的不等式f(x)<0;

(2)若對(duì)于任意的實(shí)數(shù)x,不等式f(x)-f(xa)<a2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案