數學英語物理化學 生物地理
數學英語已回答習題未回答習題題目匯總試卷匯總
設橢圓和雙曲線的公共焦點為,是兩曲線的一個公共點,則cos的值等于( )
B
解析試題分析:點作為橢圓上的點,則有,點作為雙曲線上的點,則有,由這兩式可得,,因此由余弦定理得.考點:橢圓與雙曲線的定義,余弦定理.
科目:高中數學 來源: 題型:單選題
以橢圓的頂點為頂點,離心率為的雙曲線方程( )
已知兩定點,如果動點滿足,則點的軌跡所包圍的圖形的面積等于( )
過拋物線的焦點的直線交拋物線于兩點,點是原點,若;則的面積為 ( 。
已知,則雙曲線:與:的 ( )
拋物線y2=4px(p>0)上一點M到焦點的距離為,則M到y(tǒng)軸距離為 ( )
橢圓內的一點,過點P的弦恰好以P為中點,那么這弦所在的直線方程( )
以雙曲線的焦點為頂點,頂點為焦點的橢圓標準方程為( )
設是雙曲線上關于原點O對稱的兩點,將坐標平面沿雙曲線的一條漸近線折成直二面角,則折疊后線段長的最小值為( )
百度致信 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)