【題目】如圖⑴、⑵、⑶、⑷為四個幾何體的三視圖,根據(jù)三視圖可以判斷這四個幾何體依次分別為
A.三棱臺、三棱柱、圓錐、圓臺
B.三棱臺、三棱錐、圓錐、圓臺
C.三棱柱、正四棱錐、圓錐、圓臺
D.三棱柱、三棱臺、圓錐、圓臺
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中, , , 分別為棱的中點(diǎn).
(1)在平面內(nèi)過點(diǎn)作平面交于點(diǎn),并寫出作圖步驟,但不要求證明.
(2)若側(cè)面側(cè)面,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知直線2x+y﹣8=0與直線x﹣2y+1=0交于點(diǎn)P.
(1)求過點(diǎn)P且平行于直線4x﹣3y﹣7=0的直線11的方程;(結(jié)果都寫成一般方程形式)
(2)求過點(diǎn)P的所有直線中使原點(diǎn)O到此直線的距離最大的直線12的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】化簡下列各式:
(1)sin23°cos7°+cos23°sin367°;
(2)(1+lg5)0+(﹣ ) +lg ﹣lg2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中內(nèi)角A、B、C的對邊分別為a、b、c,且2acosC=2b﹣c.
(Ⅰ)求角A的大;
(Ⅱ)如果a=1,求b+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2 sinxcosx+1﹣2sin2x,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)縮短到原來的 ,把所得到的圖象再向左平移 單位,得到的函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間 上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓: 的離心率為,直線被橢圓截得的線段長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過原點(diǎn)的直線與橢圓交于, 兩點(diǎn)(, 不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且.直線與軸、軸分別交于兩點(diǎn).設(shè)直線的斜率分別為,證明存在常數(shù)使得,并求出的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com