函數(shù)y=sin(2x-
π
3
)
的單調(diào)遞增區(qū)間是( 。
A、[kπ-
π
12
,kπ+
12
]
  k∈Z
B、[2kπ-
π
12
,2kπ+
12
]
  k∈Z
C、[kπ-
π
6
,kπ+
6
]
  k∈Z
D、[2kπ-
π
6
,2kπ+
6
]
  k∈Z
考點(diǎn):正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)正弦函數(shù)的單調(diào)性即可得到函數(shù)的增區(qū)間.
解答: 解:由-
π
2
+2kπ≤2x-
π
3
π
2
+2kπ
,
-
π
6
+2kπ≤2x≤
6
+2kπ
,
-
π
12
+kπ≤x≤
12
+kπ,k∈Z
,
即函數(shù)的單調(diào)遞增區(qū)間為:[-
π
12
+kπ,
12
+kπ],k∈Z
,
故選:A.
點(diǎn)評(píng):本題主要考查三角函數(shù)的單調(diào)性的判斷,要求熟練掌握正弦函數(shù)的單調(diào)性,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M={a2},N={1,4},則“a=-2”是“M⊆N”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin(2x+
π
4
)
的圖象向左平移
π
4
個(gè)單位,再向上平移2個(gè)單位,則所得函數(shù)的表達(dá)式是( 。
A、y=sin(2x-
π
4
)+2
B、y=cos(2x+
π
4
)+2
C、y=sin(2x+
π
4
)-2
D、y=cos(2x-
π
4
)-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=-
1
2
,則sin2α-2cos2α-1
=(  )
A、-
17
5
B、-
17
4
C、-
16
5
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某同學(xué)一學(xué)期兩次考試成績(jī)的莖葉圖,現(xiàn)從該同學(xué)兩次考試成績(jī)中各取一科成績(jī),則這兩科成績(jī)都在80分以上的概率為( 。
A、
9
10
B、
3
5
C、
3
10
D、
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果曲線y=x3+x-10的切線斜率為4,求切點(diǎn)坐標(biāo)和切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點(diǎn)的橢圓C1經(jīng)過點(diǎn)A(
5
3
,2)
,且F(0,2)是它的一個(gè)焦點(diǎn).拋物線C2的頂點(diǎn)在原點(diǎn),焦點(diǎn)為F(0,2),過點(diǎn)B(4,4)作直線交拋物線C2于M,N兩點(diǎn),C2在M,N兩點(diǎn)處的切線分別是l1,l2,且l1∩l2=P.
(1)求橢圓C1的方程及它的準(zhǔn)線方程.
(2)探究點(diǎn)P能否在橢圓C1上,若能,求出它的坐標(biāo),若不能說明理由.
(3)利用定積分的知識(shí)求橢圓C1的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn)O,對(duì)稱軸為x軸,焦點(diǎn)為F,拋物線上一點(diǎn)A的橫坐標(biāo)為2,且
FA
OA
=16

(Ⅰ)求拋物線的方程;
(Ⅱ)過點(diǎn)M(8,0)作直線l交拋物線于B,C兩點(diǎn),求證:OB⊥OC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
1
2
lg25+lg2-log39
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案