【題目】設(shè)函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,如果存在函數(shù),使得函數(shù)的值域仍是,那么稱是函數(shù)的一個等值域變換.
(1)判斷下列函數(shù)是不是函數(shù)的一個等值域變換?說明你的理由;
①;
②.
(2)設(shè)的定義域?yàn)?/span>,已知是的一個等值域變換,且函數(shù)的定義域?yàn)?/span>,求實(shí)數(shù)的值.
【答案】(1)①不是等值域變換,②是等值域變換; (2).
【解析】試題分析:(1)運(yùn)用對數(shù)函數(shù)的值域和基本不等式,結(jié)合新定義即可判斷①;運(yùn)用二次函數(shù)的值域和指數(shù)函數(shù)的值域,結(jié)合新定義即可判斷②;
(2)利用f(x)的定義域,求得值域,根據(jù)x的表達(dá)式,和t值域建立不等式,利用存在t1,t2∈R使兩個等號分別成立,求得m和n.
試題解析:
(1)①,x>0,值域?yàn)?/span>R,
,t>0,由g(t)2可得y=f[g(t)]的值域?yàn)閇1,+∞).
則x=g(t)不是函數(shù)y=f(x)的一個等值域變換;
②,即的值域?yàn)?/span>,
當(dāng)時, ,即的值域仍為,所以是的一個等值域變換,故①不是等值域變換,②是等值域變換;
(2)定義域?yàn)?/span>,因?yàn)?/span>是的一個等值域變換,且函數(shù)的定義域?yàn)?/span>, 的值域?yàn)?/span>,
,
恒有,解得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是直徑, 所在的平面, 是圓周上不同于的動點(diǎn).
(1)證明:平面平面;
(2)若,且當(dāng)二面角的正切值為時,求直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱中,底面是邊長為2的正方形, 分別為線段, 的中點(diǎn).
(1)求證: ||平面;
(2)四棱柱的外接球的表面積為,求異面直線與所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系內(nèi),已知是圓上一點(diǎn),折疊該圓兩次使點(diǎn)分別與圓上不相同的兩點(diǎn)(異于點(diǎn))重合,兩次的折痕方程分別為和,若圓上存在點(diǎn),使,其中的坐標(biāo)分別為,則實(shí)數(shù)的取值集合為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分16分)某批發(fā)公司批發(fā)某商品,每件商品進(jìn)價80元,批發(fā)價120元,該批發(fā)商為鼓勵經(jīng)銷商批發(fā),決定當(dāng)一次批發(fā)量超過100個時,每多批發(fā)一個,批發(fā)的全部商品的單價就降低0.04元,但最低批發(fā)價不能低于102元.
(1)當(dāng)一次訂購量為多少個時,每件商品的實(shí)際批發(fā)價為102元?
(2)當(dāng)一次訂購量為個, 每件商品的實(shí)際批發(fā)價為元,寫出函數(shù)的表達(dá)式;
(3)根據(jù)市場調(diào)查發(fā)現(xiàn),經(jīng)銷商一次最大定購量為個,則當(dāng)經(jīng)銷商一次批發(fā)多少個零件時,該批發(fā)公司可獲得最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域分別是A,B的函數(shù), ,規(guī)定:
現(xiàn)給定函數(shù)
(1) 若,寫出函數(shù)的解析式;
(2) 當(dāng)時,求問題(1)中函數(shù)的值域;
(3) 請設(shè)計一個函數(shù),使得函數(shù)為偶函數(shù)且不是常數(shù)函數(shù),并予以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù) 在某一周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | |||||
0 | 2 | 0 | 0 |
(Ⅰ)請將上表數(shù)據(jù)補(bǔ)充完整,函數(shù)的解析式(直接寫出結(jié)果即可)
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間;/span>
(Ⅲ)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)f(x)=ax2+bx+c(a、b∈R)滿足f(x+1)﹣f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在區(qū)間[﹣1,﹣1]上,不等式f(x)>2x+m恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com