已知三條直線l1:2x-y+a=0(a>0)、直線l2:-4x+2y+1=0和直線l3:x+y-1=0,且l1與l2的距離是.

(1)求a的值;

(2)求l3到l1的角θ;

(3)能否找到一點P,使得P點同時滿足下列三個條件:①P是第一象限的點;②P點到l1的距離是P點到l2的距離的;③P點到l1的距離與P點到l3的距離之比是.若能,求出P點坐標;若不能,請說明理由.

解:(1)l2即2x-y-=0,

∴l(xiāng)1與l2的距離d==.

=.∴|a+|=.

∵a>0,∴a=3.

(2)由(1),l1即2x-y+3=0,∴k1=2.

    而l3的斜率k3=-1,

∴tanθ==-3.

∵0≤θ<π,

∴θ=π-arctan3.

(3)設(shè)點P(x0,y0),若P點滿足條件②,則P點在與l1、l2平行的直線l′:2x-y+C=0上,

    且=·,

    即C=或C=.∴2x0-y0+=0

    或2x0-y0+=0;

    若P點滿足條件③,由點到直線的距離公式,有·,

    即|2x0-y0+3|=|x0+y0-1|,

∴x0-2y0+4=0或3x0+2=0.

    由P在第一象限,∴3x0+2=0不可能.

    聯(lián)立方程2x0-y0+=0和x0-2y0+4=0,解得應(yīng)舍去.

    由解得

∴P(,)即為同時滿足三個條件的點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知三條直線l1:2x-y+a=0(a>0),直線l2:-4x+2y+1=0和直線l3:x+y-1=0,且l1與l2的距離是
7
10
5

(1)求a的值;
(2)求l3到l1的角θ;
(3)能否找到一點P,使得P點同時滿足下列三個條件:①P是第一象限的點;②P點到l1的距離是P點到l2的距離的
1
2
;③P點到l1的距離與P點到l3的距離之比是
2
5
?若能,求P點坐標;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三條直線l1:2x-y+a=0(a>0),l2:-4x+2y+1=0和l3:x+y-1=0,且l1與l2的距離是
7
5
10

(1)求a的值;
(2)能否找到一點P同時滿足下列三個條件:
①P是第一象限的點;
②點P到l1的距離是點P到l2的距離的
1
2
;
③點P到l1的距離與點P到l3的距離之比是
2
5
?若能,求點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三條直線l1:2x-y+a=0(a>0),直線l2:-4x+2y+1=0和直線l3:x+y-1=0,且l1與l2的距離是.

(1)求a的值;w.w.w.k.s.5.u.c.o.m           

(2)求l3到l1的角θ;

(3)能否找到一點P,使得P點同時滿足下列三個條件:①P是第一象限的點;②P點到l1的距離是P點到l2的距離的;③P點到l1的距離與P點到l3的距離之比是?若能,求P點坐標;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三條直線l1:2x-y+a=0(a>0),直線l2:-4x+2y+1=0和直線l3:x+y-1=0,且直線l1與直線l2的距離是.

(1)求實數(shù)a的值;

(2)能否找到一點P,使得P點同時滿足下列三個條件:①P是第一象限的點;②P點到直線l1的距離是P點到直線l2的距離的;③P點到直線l1的距離與P點到直線l3的距離之比為.若能,求出點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三條直線l1:2x-y+3=0,直線l2:-4x+2y+1=0和直線l3:x+y-1=0.能否找到一點P,使得P點同時滿足下列三個條件:(1)P是第一象限的點;(2)P點到l1的距離是P點到l2的距離的;(3)P點到l1的距離與P點到l3的距離之比是.若能,求P點坐標;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案