【題目】某個命題與自然數(shù)n有關(guān),如果當(dāng))時該命題成立,則可得時該命題也成立,若已知時命題不成立,則下列說法正確的是______(填序號)

1時,該命題不成立;

2時,該命題不成立;

3時,該命題可能成立;

4時,該命題可能成立也可能不成立,但若時命題成立,則對任意,該命題都成立.

【答案】1)(4

【解析】

依次判斷每個選項:如果時成立,則可推導(dǎo)成立,矛盾,(1)正確;若時成立,則可得到成立,矛盾,(3)錯誤;不確定得到(4)正確(2)錯誤,得到答案.

1時,該命題不成立;

正確,如果時成立,則可推導(dǎo)成立,矛盾,故時,該命題不成立;

3時,該命題可能成立;

錯誤,若時成立,則可得成立,繼續(xù)推導(dǎo)得到成立,這與題設(shè)矛盾;

4時,該命題可能成立也可能不成立,但若時命題成立,則對任意,該命題都成立.

正確,不能確定的情況,如果時成立,則可得到成立,繼續(xù)推導(dǎo)得到對任意,該命題都成立;則可得到(2)錯誤

故答案為:(1)(4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 中,分別為,邊的中點,以為折痕把折起,使點到達點的位置,且

(1)證明:平面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系的原點為極點,軸正半軸為極軸建立極坐標(biāo)系.

(1)求圓的極坐標(biāo)方程;

(2)設(shè)曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,求三條曲線,所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】折紙與數(shù)學(xué)有著千絲萬縷的聯(lián)系,吸引了人們的廣泛興趣.因紙的長寬比稱為白銀分割比例,故紙有一個白銀矩形的美稱.現(xiàn)有一張如圖1所示的,

分別為的中點,將其按折痕折起(如圖2),使得四點重合,重合后的點記為,折得到一個如圖3所示的三棱錐.記的中點,在中,邊上的高.

1)求證:平面;

2)若分別是棱上的動點,且.當(dāng)三棱錐的體積最大時,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點為極點,以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知直線與曲線交于兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(注意:在試題卷上作答無效)

已知數(shù)列中,.

)設(shè),求數(shù)列的通項公式;

)求使不等式成立的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知矩形所在平面與半圓弧所在平面垂直,是半圓弧上異于的點.

1)證明:平面平面;

2)若,當(dāng)三棱錐的體積最大且二面角的平面角的大小為時,試確定的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,且acos C+asin C-b-c=0.

(1)求A;

(2)若AD為BC邊上的中線,cos B=,AD=,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若函數(shù)的圖像在點處的切線與直線平行,求實數(shù)的值;

(Ⅱ)討論函數(shù)的單調(diào)性;

(Ⅲ)若在函數(shù)定義域內(nèi),總有成立,試求實數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊答案