【題目】如圖,在菱形中,⊥平面,且四邊形是平行四邊形.
(1)求證:;
(2)當點在的什么位置時,使得∥平面,并加以證明.
【答案】(1)證明見解析;(2) 為的中點時,有平面,證明見解析.
【解析】試題分析:(1)連接,則,由線面垂直的性質(zhì)可得,由線面垂直的判定定理可得平面,從而可得結(jié)論;(2)當為的中點時,設(shè)與交于,連接,由中位線定理可得,進而根據(jù)線面平行的判定定理可得結(jié)論.
試題解析:(1)證明:連接BD,則AC⊥BD.
由已知得DN⊥平面ABCD,因為AC平面ABCD,所以DN⊥AC.
因為DN平面NDB,BD平面NDB,DN∩DB=D,
所以AC⊥平面NDB.
又BN平面NDB,
所以AC⊥BN.
(2)當E為AB的中點時,有AN∥平面MEC.
設(shè)CM與BN交于F,連接EF.
由已知可得四邊形BCNM是平行四邊形,F是BN的中點,
因為E是AB的中點,
所以AN∥EF.
又EF平面MEC,AN平面MEC,
所以AN∥平面MEC.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2cos2x+ sin2x﹣1.
(1)求f(x)的最大值及此時的x值
(2)求f(x)的單調(diào)減區(qū)間
(3)若x∈[﹣ , ]時,求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△AOB中,∠AOB=60°,OA=2,OB=5,在線段OB上任取一點C,△AOC為鈍角三角形的概率是( )
A.0.2
B.0.4
C.0.6
D.0.8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,上、下頂點分別是,點是的中點,若,且.
(1)求橢圓的標準方程;
(2)過的直線與橢圓交于不同的兩點,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點,且
(1)求證:不論為何值,總有平面BEF⊥平面ABC;
(2)當λ為何值時,平面BEF⊥平面ACD ?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c. (Ⅰ)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比數(shù)列,且c=2a,求cosB的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:
記x表示1臺機器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺機器在購買易損零件上所需的費用(單位:元), 表示購機的同時購買的易損零件數(shù).
(Ⅰ)若=19,求y與x的函數(shù)解析式;
(Ⅱ)若要求“需更換的易損零件數(shù)不大于”的頻率不小于0.5,求的最小值;
(Ⅲ)假設(shè)這100臺機器在購機的同時每臺都購買19個易損零件,或每臺都購買20個易損零件,分別計算這100臺機器在購買易損零件上所需費用的平均數(shù),以此作為決策依據(jù),購買1臺機器的同時應購買19個還是20個易損零件?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,設(shè)邊a,b,c所對的角為A,B,C,且A,B,C都不是直角,(bc﹣8)cosA+accosB=a2﹣b2 .
(1)若b+c=5,求b,c的值;
(2)若 ,求△ABC面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com