【題目】設函數(shù).
(1)若,求函數(shù)在的切線方程;
(2)若函數(shù)在上為單調(diào)遞減函數(shù),求實數(shù)的最小值;
(3)若存在,使得成立,求實數(shù)的取值范圍.
【答案】(1);(2);(3).
【解析】試題分析: (1)若,寫出函數(shù),求出切點和斜率,即可寫出切線方程;(2) 函數(shù)可化為,在上為單調(diào)遞減函數(shù),即導函數(shù)小于等于0在在上恒成立,分離參變量,轉化為構造出的新函數(shù)最值問題,對新函數(shù)求導,判斷單調(diào)性求出最值即可;(3) 存在,使得成立,即,又,即f(x)min ,根據(jù)的導函數(shù)對參數(shù)進行討論,分別得出單調(diào)性進而求出最小值,代入不等式求出a的范圍.
試題解析:(1)若,則,,,,
所以所求切線為
(2)函數(shù)可化為,在上為單調(diào)遞減函數(shù),在上恒成立,恒成立,令,則,
可知在單調(diào)遞增,在單調(diào)遞減,所在,
最小值是
(3)命題等價于“當時,有f(x)minf′(x)max+a”,
由(Ⅰ)知,當x∈[e,e2]時,lnx∈[1,2],,
=,
問題等價于:“當x∈[e,e2]時,有f(x)min ”,
①a 時,由(2),f(x)在[e,e2]上為減函數(shù),
則f(x)min=f(e2)=
∴.
②當
由于在上為增函數(shù),所以的值域為
即
若,即,恒成立,所以為增函數(shù),于是
,不合題意
若,,由的單調(diào)性和值域知
存在唯一,使得,且
,,為減函數(shù)
,,為增函數(shù)
所以
與矛盾
綜上,實數(shù)a的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】某城市為鼓勵人們綠色出行,乘坐地鐵,地鐵公司決定按照乘客經(jīng)過地鐵站的數(shù)量實施分段優(yōu)惠政策,不超過站的地鐵票價如下表:
乘坐站數(shù) | |||
票價(元) |
現(xiàn)有甲、乙兩位乘客同時從起點乘坐同一輛地鐵,已知他們乘坐地鐵都不超過站.甲、乙乘坐不超過站的概率分別為, ;甲、乙乘坐超過站的概率分別為, .
(1)求甲、乙兩人付費相同的概率;
(2)設甲、乙兩人所付費用之和為隨機變量,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)過中央電視臺《魅力中國城》欄目的三輪角逐,黔東南州以三輪競演總分排名第一名問鼎“最具人氣魅力城市”.如圖統(tǒng)計了黔東南州從2010年到2017年的旅游總人數(shù)(萬人次)的變化情況,從一個側面展示了大美黔東南的魅力所在.根據(jù)這個圖表,在下列給出的黔東南州從2010年到2017年的旅游總人數(shù)的四個判斷中,錯誤的是( )
A. 旅游總人數(shù)逐年增加
B. 2017年旅游總人數(shù)超過2015、2016兩年的旅游總人數(shù)的和
C. 年份數(shù)與旅游總人數(shù)成正相關
D. 從2014年起旅游總人數(shù)增長加快
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,點的坐標為,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,以軸的非負半軸為極軸,選擇相同的單位長度建立極坐標系,圓極坐標方程為.
(Ⅰ)當時,求直線的普通方程和圓的直角坐標方程;
(Ⅱ)直線與圓的交點為、,證明:是與無關的定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2018屆寧夏育才中學高三上學期期末】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示),由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的.
(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(2)試估計該公司投入萬元廣告費用之后,對應銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
由表中的數(shù)據(jù)顯示, 與之間存在著線性相關關系,請將(2)的結果填入空白欄,并求出關于的回歸直線方程.
參考公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2018屆北京市海淀區(qū)】如圖,三棱柱側面底面,
, 分別為棱的中點.
(Ⅰ)求證: ;
(Ⅱ)求三棱柱的體積;
(Ⅲ)在直線上是否存在一點,使得平面?若存在,求出的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某快餐代賣店代售多種類型的快餐,深受廣大消費者喜愛.其中,種類型的快餐每份進價為元,并以每份元的價格銷售.如果當天20:00之前賣不完,剩余的該種快餐每份以元的價格作特價處理,且全部售完.
(1)若該代賣店每天定制份種類型快餐,求種類型快餐當天的利潤(單位:元)關于當天需求量(單位:份,)的函數(shù)解析式;
(2)該代賣店記錄了一個月天的種類型快餐日需求量(每天20:00之前銷售數(shù)量)
日需求量 | ||||||
天數(shù) |
(i)假設代賣店在這一個月內(nèi)每天定制份種類型快餐,求這一個月種類型快餐的日利潤(單位:元)的平均數(shù)(精確到);
(ii)若代賣店每天定制份種類型快餐,以天記錄的日需求量的頻率作為日需求量發(fā)生的概率,求種類型快餐當天的利潤不少于元的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com