已知函數(shù)
(1)當(dāng)時,求最小值;
(2)若存在單調(diào)遞減區(qū)間,求的取值范圍;
(3)求證:).

(1)1   (2)

解析試題分析:(1)先求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)求出函數(shù)f(x)的單調(diào)區(qū)間,即可可求最小值;(2)先求導(dǎo),由有正數(shù)解得到含有參數(shù)a的關(guān)于x的不等式的解,在分類求出滿足條件的a,最后求并集即可.(3)用數(shù)學(xué)歸納法證明.
試題解析:(1),定義域為
 
上是增函數(shù).
.                               4分
(2)因為
因為若存在單調(diào)遞減區(qū)間,所以有正數(shù)解.
的解 
當(dāng)時,明顯成立 .
②當(dāng)時,開口向下的拋物線,總有的解;
③當(dāng)時,開口向上的拋物線,
即方程有正根.
因為
所以方程有兩正根.
當(dāng)時,
,解得
綜合①②③知:
或: 
的解 
即 
即  
,
(3)(法一)根據(jù)(Ⅰ)的結(jié)論,當(dāng)時,,即
,則有,   

.                                 14分
(法二)當(dāng)時,
,,即時命題成立.
設(shè)當(dāng)時,命題成立,即
時,
根據(jù)(Ⅰ)的結(jié)論,當(dāng)時,,即
,則有
則有,即時命題也成立.
因此,由數(shù)學(xué)歸納法可知不等式成立.
考點:1.求函數(shù)的導(dǎo)數(shù)和導(dǎo)數(shù)性質(zhì)的應(yīng)用;2.含參數(shù)不等式的解法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),,函數(shù)的圖象與軸的交點也在函數(shù)的圖象上,且在此點有公切線.
(Ⅰ)求,的值;
(Ⅱ)試比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)求的單調(diào)區(qū)間、最大值;
(2)討論關(guān)于的方程的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求的值域;
(2)設(shè),函數(shù).若對任意,總存在,使,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)設(shè),試討論單調(diào)性;
(2)設(shè),當(dāng)時,若,存在,使,求實數(shù)
取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ln-a+x(a>0).
(Ⅰ)若,求f(x)圖像在x=1處的切線的方程;
(Ⅱ)若的極大值和極小值分別為m,n,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),若在點處的切線斜率為
(Ⅰ)用表示;
(Ⅱ)設(shè),若對定義域內(nèi)的恒成立,
(。┣髮崝(shù)的取值范圍;
(ⅱ)對任意的,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)當(dāng)時,討論函數(shù)在[上的單調(diào)性;
(Ⅱ)如果,是函數(shù)的兩個零點,為函數(shù)的導(dǎo)數(shù),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
(Ⅲ)求證:,e是自然對數(shù)的底數(shù)).

查看答案和解析>>

同步練習(xí)冊答案