函數(shù)y=x2-x+2,x∈[-
1
2
,2]的值域是
 
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:把二次函數(shù)的解析式配方,結(jié)合x∈[-
1
2
,2],求得函數(shù)的最值,可得函數(shù)的值域.
解答: 解:∵函數(shù)y=x2-x+2=(x-
1
2
)
2
+
7
4
,x∈[-
1
2
,2],
可得當(dāng)x=
1
2
時(shí),函數(shù)取得最小值為
7
4
;當(dāng)x=2時(shí),函數(shù)取得最大值為4,
故函數(shù)的值域?yàn)?span id="d40ttwn" class="MathJye">[
7
4
,4],
故答案為:[
7
4
,4].
點(diǎn)評(píng):本題主要考查求二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:函數(shù)y=logm(6-mx)在[1,2]上單調(diào)遞減.
(1)求實(shí)數(shù)m的取值范圍;
(2)命題q:方程x2-2x+m+1=0在(0,+∞)內(nèi)有一個(gè)根.若p或q為真,p且q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若0<x<1,則f(x)=x(1-x)的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{
n+1
2 n+1
}的前n項(xiàng)和Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos20°(1-
3
tan50°)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)等比數(shù)列{an}滿足:a6=a5+2a4,若存在兩項(xiàng)am,an使得
aman
=2a1,則
1
m
+
4
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3log34=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanx=2,則
sinx+cosx
sinx-cosx
=( 。
A、3
B、
1
3
C、-
1
3
D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程log3x=x-4的一個(gè)實(shí)根所在的區(qū)間是( 。
A、(2,3)
B、(3,4)
C、(5,6)
D、(6,7)

查看答案和解析>>

同步練習(xí)冊答案