【題目】已知△ABC中,AC=1, ,設(shè)∠BAC=x,記 ;
(1)求函數(shù)f(x)的解析式及定義域;
(2)試寫出函數(shù)f(x)的單調(diào)遞增區(qū)間,并求方程 的解.

【答案】
(1)解:由正弦定理有 = =

∴BC= sinx,AB= ,

= sinxsin( ﹣x) = cosx﹣ sinx)sinx= sin(2x+ )﹣ ,

其定義域?yàn)椋?,


(2)解:∵﹣ +2kπ≤2x+ +2kπ,k∈Z,

∴﹣ +kπ≤x≤ +kπ,k∈Z,

∵x∈(0,

∴遞增區(qū)間 ,

∵方程 = sin(2x+ )﹣ ,

∴sin(2x+ )=1,

解得


【解析】(1)由條件利用正弦定理、兩個(gè)向量的數(shù)量積公式、三角恒等變換化簡(jiǎn)函數(shù)f(x)的解析式.(2)利用正弦函數(shù)的單調(diào)性求得f(x)的單調(diào)區(qū)間,并求出x的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx+c,且a>b>c,a+b+c=0,集合A={m|f(m)<0},則(
A.任意m∈A,都有f(m+3)>0
B.任意m∈A,都有f(m+3)<0
C.存在m∈A,都有f(m+3)=0
D.存在m∈A,都有f(m+3)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在棱錐P﹣ABCD中,ABCD為矩形,PD⊥面ABCD,PB=2,PB與面PCD成45°角,PB與面ABD成30°角.
(1)在PB上是否存在一點(diǎn)E,使PC⊥面ADE,若存在確定E點(diǎn)位置,若不存在,請(qǐng)說明理由;
(2)當(dāng)E為PB中點(diǎn)時(shí),求二面角P﹣AE﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知曲線 及曲線 ,C1上的點(diǎn)P1的橫坐標(biāo)為 .從C1上的點(diǎn) 作直線平行于x軸,交曲線C2于Qn點(diǎn),再從C2上的點(diǎn) 作直線平行于y軸,交曲線C1于Pn+1點(diǎn),點(diǎn)Pn(n=1,2,3…)的橫坐標(biāo)構(gòu)成數(shù)列{an}.
(1)求曲線C1和曲線C2的交點(diǎn)坐標(biāo);
(2)試求an+1與an之間的關(guān)系;
(3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由n(n≥2)個(gè)不同的數(shù)構(gòu)成的數(shù)列a1 , a2 , …an中,若1≤i<j≤n時(shí),aj<ai(即后面的項(xiàng)aj小于前面項(xiàng)ai),則稱ai與aj構(gòu)成一個(gè)逆序,一個(gè)有窮數(shù)列的全部逆序的總數(shù)稱為該數(shù)列的逆序數(shù).如對(duì)于數(shù)列3,2,1,由于在第一項(xiàng)3后面比3小的項(xiàng)有2個(gè),在第二項(xiàng)2后面比2小的項(xiàng)有1個(gè),在第三項(xiàng)1后面比1小的項(xiàng)沒有,因此,數(shù)列3,2,1的逆序數(shù)為2+1+0=3;同理,等比數(shù)列 的逆序數(shù)為4.
(1)計(jì)算數(shù)列 的逆序數(shù);
(2)計(jì)算數(shù)列 (1≤n≤k,n∈N*)的逆序數(shù);
(3)已知數(shù)列a1 , a2 , …an的逆序數(shù)為a,求an , an1 , …a1的逆序數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)M(20,40),拋物線y2=2px(p>0)的焦點(diǎn)為F,若對(duì)于拋物線上的任意點(diǎn)P,|PM|+|PF|的最小值為41,則p的值等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】實(shí)數(shù)a,b滿足ab>0且a≠b,由a、b、 、 按一定順序構(gòu)成的數(shù)列(
A.可能是等差數(shù)列,也可能是等比數(shù)列
B.可能是等差數(shù)列,但不可能是等比數(shù)列
C.不可能是等差數(shù)列,但可能是等比數(shù)列
D.不可能是等差數(shù)列,也不可能是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x3+ax在(﹣1,0)上是增函數(shù).
(1)求實(shí)數(shù)a的取值范圍A;
(2)當(dāng)a為A中最小值時(shí),定義數(shù)列{an}滿足:a1∈(﹣1,0),且2an+1=f(an),用數(shù)學(xué)歸納法證明an∈(﹣1,0),并判斷an+1與an的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= +acosx,g(x)是f(x)的導(dǎo)函數(shù).
(1)若f(x)在 處的切線方程為y= ,求a的值;
(2)若a≥0且f(x)在x=0時(shí)取得最小值,求a的取值范圍;
(3)在(1)的條件下,當(dāng)x>0時(shí),

查看答案和解析>>

同步練習(xí)冊(cè)答案