【題目】在平面直角坐標(biāo)系中,已知平行于軸的動(dòng)直線交拋物線 于點(diǎn),點(diǎn)的焦點(diǎn).圓心不在軸上的圓與直線, 軸都相切,設(shè)的軌跡為曲線.

(1)求曲線的方程;

(2)若直線與曲線相切于點(diǎn),過且垂直于的直線為,直線 分別與軸相交于點(diǎn), .當(dāng)線段的長(zhǎng)度最小時(shí),求的值.

【答案】(1) (2)見解析.

【解析】試題分析:(1)設(shè)根據(jù)題意得到,化簡(jiǎn)得到軌跡方程;(2)設(shè), , ,構(gòu)造函數(shù)研究函數(shù)的單調(diào)性,得到函數(shù)的最值.

解析:

(1)因?yàn)閽佄锞的方程為,所以的坐標(biāo)為,

設(shè),因?yàn)閳A軸、直線都相切, 平行于軸,

所以圓的半徑為,點(diǎn) ,則直線的方程為,即

所以,又,所以,即,

所以的方程為

(2)設(shè), , ,

由(1)知,點(diǎn)處的切線的斜率存在,由對(duì)稱性不妨設(shè)

,所以,

所以, ,

所以

, ,則

,由,

所以在區(qū)間單調(diào)遞減,在單調(diào)遞增,

所以當(dāng)時(shí), 取得極小值也是最小值,即取得最小值, 此時(shí)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次測(cè)量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,8686,8888,88,88.B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對(duì)應(yīng)相同的是

A. 眾數(shù) B. 平均數(shù) C. 中位數(shù) D. 標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次電視節(jié)目的答題游戲中,題型為選擇題,只有AB兩種結(jié)果,其中某選手選擇正確的概率為p,選擇錯(cuò)誤的概率為q,若選擇正確則加1分,選擇錯(cuò)誤則減1分,現(xiàn)記該選手答完n道題后總得分為”.

1)當(dāng)時(shí),記,求的分布列及數(shù)學(xué)期望;

2)當(dāng),時(shí),求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓周率是一個(gè)在數(shù)學(xué)及物理學(xué)中普遍存在的數(shù)學(xué)常數(shù),它既常用又神秘,古今中外很多數(shù)學(xué)家曾研究它的計(jì)算方法.下面做一個(gè)游戲:讓大家各自隨意寫下兩個(gè)小于1的正數(shù)然后請(qǐng)他們各自檢查一下,所得的兩數(shù)與1是否能構(gòu)成一個(gè)銳角三角形的三邊,最后把結(jié)論告訴你,只需將每個(gè)人的結(jié)論記錄下來就能算出圓周率的近似值.假設(shè)有個(gè)人說“能”,而有個(gè)人說“不能”,那么應(yīng)用你學(xué)過的知識(shí)可算得圓周率的近似值為()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn),動(dòng)點(diǎn)、兩點(diǎn)連線的斜率之積為.

1)求點(diǎn)的軌跡的方程;

2)已知點(diǎn)是軌跡上的動(dòng)點(diǎn),點(diǎn)在直線上,且滿足(其中為坐標(biāo)原點(diǎn)),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若是定義域上的增函數(shù),求的取值范圍;

2)設(shè),分別為的極大值和極小值,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,ACBC,且,AC=BC=2,DE分別為AB,PB中點(diǎn),PD⊥平面ABCPD=3.

(1)求直線CE與直線PA夾角的余弦值;

(2)求直線PC與平面DEC夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,過軸的垂線交橢圓于點(diǎn)(點(diǎn)軸上方),斜率為的直線交橢圓,兩點(diǎn),過點(diǎn)作直線交橢圓于點(diǎn),且,直線軸于點(diǎn).

(1)設(shè)橢圓的離心率為,當(dāng)點(diǎn)為橢圓的右頂點(diǎn)時(shí),的坐標(biāo)為,求的值.

(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高三年級(jí)某班50名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,成績(jī)分組區(qū)間為:.其中a,b,c成等差數(shù)列且.物理成績(jī)統(tǒng)計(jì)如表.(說明:數(shù)學(xué)滿分150分,物理滿分100分)

分組

頻數(shù)

6

9

20

10

5

1)根據(jù)頻率分布直方圖,請(qǐng)估計(jì)數(shù)學(xué)成績(jī)的平均分;

2)根據(jù)物理成績(jī)統(tǒng)計(jì)表,請(qǐng)估計(jì)物理成績(jī)的中位數(shù);

3)若數(shù)學(xué)成績(jī)不低于140分的為“優(yōu)”,物理成績(jī)不低于90分的為“優(yōu)”,已知本班中至少有一個(gè)“優(yōu)”同學(xué)總數(shù)為6人,從此6人中隨機(jī)抽取3人,記X為抽到兩個(gè)“優(yōu)”的學(xué)生人數(shù),求X的分布列和期望值.

查看答案和解析>>

同步練習(xí)冊(cè)答案