【題目】某市準備引進優(yōu)秀企業(yè)進行城市建設. 城市的甲地、乙地分別對5個企業(yè)(共10個企業(yè))進行綜合評估,得分情況如莖葉圖所示.
(Ⅰ)根據(jù)莖葉圖,求乙地對企業(yè)評估得分的平均值和方差;
(Ⅱ)規(guī)定得分在85分以上為優(yōu)秀企業(yè). 若從甲、乙兩地準備引進的優(yōu)秀企業(yè)中各隨機選取1個,求這兩個企業(yè)得分的差的絕對值不超過5分的概率.
注:方差
【答案】(Ⅰ)88,48.4.(Ⅱ)
【解析】試題分析:(Ⅰ)直接利用莖葉圖求解乙地對企業(yè)評估得分的平均值和方差即可.
(Ⅱ)甲區(qū)優(yōu)秀企業(yè)得分為88,89,93,95共4個,乙區(qū)優(yōu)秀企業(yè)得分為86,95,96共3個.列出從兩個區(qū)各選一個優(yōu)秀企業(yè),所有基本事件,求出得分的絕對值的差不超過5分的個數(shù).即可求解概率.
試題解析:(Ⅰ)乙地對企業(yè)評估得分的平均值是,
方差是.
(Ⅱ)從甲、乙兩地準備引進的優(yōu)秀企業(yè)中各隨機選取1個,有, , , , , , , , , , , 共組, 設“得分的差的絕對值不超過5分”為事件,則事件包含有, , , , , , , 共組.
所以
所以得分的差的絕對值不超過5分的概率是
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)《中國新聞網(wǎng)》10月21日報道,全國很多省市將英語考試作為高考改革的重點,一時間“英語考試該如何改”引起廣泛關注.為了解某地區(qū)學生和包括老師、家長在內(nèi)的社會人士對高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否“取消英語聽力”的問題,調(diào)查統(tǒng)計的結(jié)果如下表:
態(tài)度 | 應該取消 | 應該保留 | 無所謂 |
在校學生 | 2100人 | 120人 | y人 |
社會人士 | 600人 | x人 | z人 |
已知在全體樣本中隨機抽取1人,抽到持“應該保留”態(tài)度的人的概率為0.05.
(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取360人進行問卷訪談,問應在持“無所謂”態(tài)度的人中抽取多少人?
(Ⅱ)在持“應該保留”態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進行深入交流,求第一組中在校學生人數(shù)ξ的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若曲線在處的切線的方程為,求實數(shù)的值;
(2)設,若對任意兩個不等的正數(shù),都有恒成立,求實數(shù)的取值范圍;
(3)若在上存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖.則獲得復賽資格的人數(shù)為( )
A. 520 B. 540 C. 620 D. 640
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)y=Asin(ωx+φ)在一個周期內(nèi)的圖象如圖,此函數(shù)的解析式為( )
A.y=2sin(2x+ )
B.y=2sin(2x+ )
C.y=2sin( ﹣ )
D.y=2sin(2x﹣ )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某闖關游戲有這樣一個環(huán)節(jié):該關卡有一道上了鎖的門,要想通過該關卡,要拿到門前密碼箱里的鑰匙,才能開門過關.但是密碼箱需要一個密碼才能打開,并且3次密碼嘗試錯誤,該密碼箱被鎖定,從而闖關失。橙说竭_該關卡時,已經(jīng)找到了可能打開密碼箱的6個密碼(其中只有一個能打開密碼箱),他決定從中隨機地選擇1個密碼進行嘗試.若密碼正確,則通關成功;否則繼續(xù)嘗試,直至密碼箱被鎖定.
(1)求這個人闖關失敗的概率;
(2)設該人嘗試密碼的次數(shù)為X,求X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐A-BCDE中,底面BCDE為直角梯形,CD⊥平面ABC,側(cè)面ABC是等腰直角三角形,∠EBC=∠ABC=90°,BC=CD=2BE=2,點M是棱AD的中點
(I)證明:平面AED⊥平面ACD;
(Ⅱ)求銳二面角B-CM-A的余弦值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)= ,曲線y=f(x)在點(1,f(1))處的切線與直線2x+y+1=0垂直.
(1)求a的值;
(2)若x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com