設(shè)復(fù)數(shù)z=
3(1-2i)
1-i
則復(fù)平面上復(fù)數(shù)z所對應(yīng)的點在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限
考點:復(fù)數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:直接利用復(fù)數(shù)代數(shù)形式的乘除運算化簡后求出復(fù)數(shù)對應(yīng)點的坐標(biāo),則答案可求.
解答: 解:z=
3(1-2i)
1-i
=
3(1-2i)(1+i)
(1-i)(1+i)
=
9-3i
2
=
9
2
-
3
2
i
,
∴復(fù)平面上復(fù)數(shù)z所對應(yīng)的點的坐標(biāo)為(
9
2
,-
3
2
),位于第四象限.
故選:D.
點評:本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程ax2-4ax+1=0的兩個實根α,β滿足不等式|lgα-lgβ|≤1,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lgx+x-2在下列哪個區(qū)間一定存在零點( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=cos2x-sin2x是( 。
A、最小正周期為2π的奇函數(shù)
B、最小正周期為2π的偶函數(shù)
C、最小正周期為π的奇函數(shù)
D、最小正周期為π的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果關(guān)于x的方程sin2x-(2+a)sinx+2a=0在x∈[-
π
6
,
6
]上有兩個實數(shù)根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2-x,x≤0
4-x2
,0<x≤2
,則
2
-2
f(x)dx的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
bx-a
ax
(a>0,x>0)的圖象過點(a,0).
(1)判斷函數(shù)f(x)在(0.+∞)上的單調(diào)并用函數(shù)單調(diào)性定義加以證明;
(2)若a>
1
5
函數(shù)f(x)在[
1
5a
,5a]上的值域是[
1
5a
,5a],求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)為奇函數(shù),且滿足f(x+4)=f(x),當(dāng)x∈[0,1]時,f(x)=2x-1
(1)求f(x)在[-1,0)上的解析式
(2)求f(log 
1
2
24)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4
2
1
x
dx( 。
A、-2ln2
B、ln 2
C、2 ln 2
D、-ln2

查看答案和解析>>

同步練習(xí)冊答案