【題目】如圖所示的多面體中,四邊形是邊長為2的正方形,平面.
(1)設BD與AC的交點為O,求證:平面;
(2)求二面角的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐中,,分別是線段,的中點,底面是正三角形,延長到點,使得.
(1)為線段上確定一點,當平面時,求的值;
(2)當平面,且時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(θ為參數(shù)),以原點為極點,x軸非負半軸為極軸,建立極坐標系,曲線C2的極坐標方程為.
(1)求曲線C1的極坐標方程以及曲線C2的直角坐標方程;
(2)若直線l:y=kx與曲線C1、曲線C2在第一象限交于P、Q,且|OQ|=|PQ|,點M的直角坐標為(1,0),求△PMQ的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓:過點,且橢圓的離心率為,直線:與橢圓相交于、兩點,線段的中垂線交橢圓于、兩點.
(1)求橢圓的標準方程;
(2)求線段長的最大值;
(3)求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線斜率為1,求實數(shù)a的值;
(2)當時,求證:;
(3)若函數(shù)在區(qū)間上存在極值點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖(1),在矩形中,,在邊上,.沿,將和折起,使平面和平面都與平面垂直,如圖(2).
(1)試判斷圖(2)中直線與的位置關系,并說明理由;
(2)求平面和平面所成銳角二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率是,上頂點坐標為.
(1)求橢圓的方程;
(2)問是否存在斜率為1的直線與橢圓交于兩點,為橢圓的右焦點,,的重心分別為,且以線段直徑的圓過原點,若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓經(jīng)過拋物線的焦點,且與拋物線的準線相切.
(1)求拋物線的標準方程;
(2)設經(jīng)過點的直線交拋物線于兩點,點關于軸的對稱點為點,若的面積為6,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com