設數(shù)列{an}的前n項和為Sn,且滿足Sn=2an-n
(1)求a1,a2,a3,a4
(2)猜想數(shù)列{an}的通項公式an,并用數(shù)學歸納法證明.
考點:數(shù)學歸納法
專題:證明題,點列、遞歸數(shù)列與數(shù)學歸納法
分析:(1)由題設條件,分別令n=1,2,3,4,能夠求出a1,a2,a3,a4
(2)由(1)猜想數(shù)列{an}的通項公式:an=2n-1,檢驗n=1時等式成立,假設n=k時命題成立,證明當n=k+1時命題也成立.
解答: 解:(1)因為Sn=2an-n,
所以a1=1,a2=3,a3=7,a4=15;
(2)猜想 an=2n-1
證明:①n=1時成立
②假設n=k時成立,即ak=2k-1
則n=k+1時,Sk+1=2ak+1-(k+1),又Sk=2ak-k
兩式相減得:ak+1=2ak+1
由假設及上式得:ak+1=2(2k-1)+1
即:ak+1=2k+1-1
所以n=k+1時也成立
由①②知an=2n-1,n∈N+時成立
點評:本題是中檔題,考查數(shù)列遞推關系式的應用,數(shù)學歸納法證明數(shù)列問題的方法,考查邏輯推理能力,計算能力.注意在證明n=k+1時用上假設,化為n=k的形式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖直三棱柱中,AB⊥AC,AB=AC,D、E分別為AA1、B1C的中點,
(Ⅰ)證明:DE⊥平面BCC1
(Ⅱ)設B1C與平面BCD所成角的大小為30°,求二面角A-BD-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sna1= - 
2
3
,滿足Sn+
1
Sn
+2=an(n≥2)

(Ⅰ)分別計算S1,S2,S3,S4的值并歸納Sn的表達式(不需要證明過程);
(Ⅱ)記f(1)=-a1,f(n)=-a3n(n≥2),證明:f(1)+f(2)+f(3)+…+f(n)<
13
18
(n∈N*)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)的定義域為D,若存在閉區(qū)間[a,b]⊆D,使得函數(shù)f(x)滿足:(1)f(x)在[a,b]內(nèi)是單調(diào)函數(shù);(2)f(x)在[a,b]上的值域為[ka,kb],則稱區(qū)間[a,b]為y=f(x)的“和諧k區(qū)間”.
(Ⅰ)試判斷函數(shù)g(x)=x2,h(x)=lnx是否存在“和諧2區(qū)間”,若存在,找出一個符合條件的區(qū)間;若不存在,說明理由.
(Ⅱ)若函數(shù)f(x)=ex存在“和諧k區(qū)間”,求正整數(shù)k的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C的極坐標方程為
2
ρ=4sin(θ+
π
4
),以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=3+t
y=1-2t
,(t為參數(shù))
(Ⅰ)將圓C的極坐標方程化為直角坐標方程,直線l的參數(shù)方程化為普通方程;
(Ⅱ)判斷直線l和圓C的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=cosx+
x2
2
-1.
(Ⅰ)求證:當x≥0時,f(x)≥0;
(Ⅱ)若a∈R,證明:當a≥1時,eax≥sinx-cosx+2對任意的x≥0恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓F:
x2
a2
-
y2
b2
=1(a>b>0)經(jīng)過D(2,0),E(1,
3
2
)兩點.
(I)求橢圓F的方程;
(Ⅱ)若直線l:y=kx+m與F交于不同兩點A,B,點G是線段AB中點,點O為坐標原點,設射線OG交F于點Q,且
OQ
=2
OG

①證明:4m2=4k2+1;
②求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,圓M與圓N交于A,B兩點,以A為切點作兩圓的切線分別交圓M和圓N于C,D兩點,延長延長DB交圓M于點E,延長CB交圓N于點F.已知BC=5,DB=10.
(1)求AB的長;         
(2)求
CF
DE

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2-2x+4y-4=0,斜率為1的直線l交圓C與A、B兩點.
(1)化圓C的方程為標準方程,并指出圓心和半徑;
(2)是否存在直線l,使以線段AB為直徑的圓過原點?若存在,求出直線l的方程;若不存在,說明理由;
(3)當直線l平行移動時,求△CAB面積的最大值.

查看答案和解析>>

同步練習冊答案