(2007•普陀區(qū)一模)已知復(fù)數(shù)z1=
3a+2
+(a2-3)i,z2=2+(3a+1)i
,(I是虛數(shù)單位).若復(fù)數(shù)z1-z2在復(fù)平面上對(duì)應(yīng)點(diǎn)落在第一象限,求實(shí)數(shù)a的取值范圍.
分析:由題設(shè)條件,可先通過復(fù)數(shù)的運(yùn)算求出的代數(shù)形式的表示,再由其幾何意義得出實(shí)部與虛部的符號(hào),轉(zhuǎn)化出實(shí)數(shù)a所滿足的不等式,解出其取值范圍
解答:解:∵復(fù)數(shù)z1=
3
a+2
+(a2-3)i,z2=2+(3a+1)i
,
∴z1-z2 =
3
a+2
-2+(a2-3a-4)i
,又其對(duì)應(yīng)點(diǎn)落在第一象限
3
a+2
-2>0
a2-3a-4>0
解得-2<a<-1
實(shí)數(shù)a的取值范圍是-2<a<-1
點(diǎn)評(píng):本題考查復(fù)數(shù)的代數(shù)形式及其幾何意義,解題的關(guān)鍵是根據(jù)復(fù)數(shù)的代數(shù)形式的幾何意義得出參數(shù)所滿足的不等式,從而解出參數(shù)的取值范圍,由復(fù)數(shù)的幾何意義轉(zhuǎn)化出參數(shù)所滿足的不等式是解題的重點(diǎn),難點(diǎn).新教材地區(qū)復(fù)數(shù)內(nèi)容被大量刪減,近幾年高考中此類題在新教材地區(qū)基本上不出現(xiàn)了.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2007•普陀區(qū)一模)已知a、b是非零實(shí)數(shù),且a>b,則下列不等式中成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•普陀區(qū)一模)函數(shù)y=x+
4x
 的單調(diào)遞增區(qū)間為
(-∞,-2)和(+2,+∞)
(-∞,-2)和(+2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•普陀區(qū)一模)在等差數(shù)列{an}中,a2=7,a11=a9+6,a1=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•普陀區(qū)一模)已知復(fù)數(shù)z的模為1,且復(fù)數(shù)z的實(shí)部為
1
3
,則復(fù)數(shù)z的虛部為
±
2
2
3
±
2
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•普陀區(qū)一模)已知集合M={x||x-2|≤1},N={x|x2-x-6≥0},則M∩N=
{3}
{3}

查看答案和解析>>

同步練習(xí)冊(cè)答案