△ABC中,若已知三邊為連續(xù)正整數(shù),最大角是鈍角,(1)求最大角;(2)求以△ABC的最大角為內(nèi)角,且夾此角的兩邊之和為4的平行四邊形的最大面積.

答案:
解析:

解:(1)設(shè)a=n1,b=nc=n+1,n1

C是鈍角,∴

1n4,n,∴n=23

當(dāng) n=2時(shí),a=1b=2c=3,不能能構(gòu)成三角形,當(dāng)n=3時(shí),a=2,b=3c=4

(2)設(shè)夾角C的兩邊為x,y,則x+y=4,

,


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點(diǎn),D為PB中點(diǎn),且△PMB為正三角形.
(1)求證:DM∥平面APC;
(2)求證:平面ABC⊥平面APC;
(3)若BC=4,AB=20,求三棱錐D-BCM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知有關(guān)正三角形的一個(gè)結(jié)論:“在正三角形ABC中,若D是BC的中點(diǎn),G是三角形ABC內(nèi)切圓的圓心,則
AG
GD
=2”.若把該結(jié)論推廣到正四面體(所有棱長均相等的三棱錐),則有結(jié)論:“在正四面體ABCD中,若M是正三角形BCD的中心,O是在正四面體ABCD內(nèi)切球的球心,則
AO
OM
=
3
3
”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列命題:
①在∠ABC和∠DEF中,若AB∥DE,BC∥EF,則∠ABC=∠DEF;
②已知三條直線a,b,c,且a⊥b,c⊥b,則a∥c;
③已知直線a,b,m,n,且a∥m,b∥n,則a交b所成的角與m交n所成的角相等;
④如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別垂直,那么這兩個(gè)角互補(bǔ).
其中真命題的有
(漏選得一半的分,錯(cuò)選不得分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:013

在△ABC中,若已知a=18,b=22,A=35°,求B時(shí),解的個(gè)數(shù)是

[  ]

A.無解
B.一解
C.兩解
D.三解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖北省期中題 題型:單選題

在直三棱柱A1B1C1-ABC中,,已知G與E分別為A1B1和CC1的中點(diǎn),D與F分別為線段AC和AB上的動(dòng)點(diǎn)(不包括端點(diǎn)).若GD⊥EF,則線段DF長度的取值范圍為
[     ]

A.      
B.          
C.          
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案