【題目】某班級(jí)共有50名同學(xué)(男女各占一半),為弘揚(yáng)傳統(tǒng)文化,班委組織了“古詩(shī)詞男女對(duì)抗賽”,將同學(xué)隨機(jī)分成25組,每組男女同學(xué)各一名,每名同學(xué)均回答同樣的五個(gè)不同問(wèn)題,答對(duì)一題得一分,答錯(cuò)或不答得零分,總分5分為滿(mǎn)分.最后25組同學(xué)得分如下表:

組別號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

13

男同學(xué)得分

5

4

5

5

4

5

5

4

4

4

5

5

4

女同學(xué)得分

4

3

4

5

5

5

4

5

5

5

5

3

5

分差

1

1

1

0

-1

0

1

-1

-1

-1

0

2

-1

組別號(hào)

14

15

16

17

18

19

20

21

22

23

24

25

男同學(xué)得分

4

3

4

4

4

4

5

5

5

4

3

3

女同學(xué)得分

5

3

4

5

4

3

5

5

3

4

5

5

分差

-1

0

0

-1

0

1

0

0

2

0

-2

-2

I)完成列聯(lián)表,并判斷是否有90%的把握認(rèn)為“該次對(duì)抗賽是否得滿(mǎn)分”與“同學(xué)性別”有關(guān);

(Ⅱ)某課題研究小組假設(shè)各組男女同學(xué)分差服從正態(tài)分布,首先根據(jù)前20組男女同學(xué)的分差確定,然后根據(jù)后面5組同學(xué)的分差來(lái)檢驗(yàn)?zāi)P,檢驗(yàn)方法是:記后面5組男女同學(xué)分差與的差的絕對(duì)值分別為,若出現(xiàn)下列兩種情況之一,則不接受該模型,否則接受該模型.①存在;②記滿(mǎn)足i的個(gè)數(shù)為k,在服從正態(tài)分布的總體(個(gè)體數(shù)無(wú)窮大)中任意取5個(gè)個(gè)體,其中落在區(qū)間內(nèi)的個(gè)體數(shù)大于或等于k的概率為P.

試問(wèn)該課題研究小組是否會(huì)接受該模型.

0.10

0.05

0.010

2.706

3.841

6.635

參考公式和數(shù)據(jù):

,;若,有,.

【答案】I)列聯(lián)表見(jiàn)解析,沒(méi)有把握;(Ⅱ)第②種情況出現(xiàn),所以該小組不會(huì)接受該模型.

【解析】

I)由已知可得列聯(lián)表,再利用卡方公式計(jì)算即可;

,由題知,而,故不存在 而滿(mǎn)足i的個(gè)數(shù)為3,算出的概率為0.043,從服從總體(個(gè)體數(shù)無(wú)窮大)中任意取5個(gè)個(gè)體,其中值屬于的個(gè)體數(shù)為Y,則,再利用二項(xiàng)分布概率公式計(jì)算即可.

I)由表可得

男同學(xué)

女同學(xué)

總計(jì)

該次大賽得滿(mǎn)分

10

14

24

該次大賽未得滿(mǎn)分

15

11

26

總計(jì)

25

25

50

所以,

所以沒(méi)有90%的把握說(shuō)“該次大賽是否得滿(mǎn)分”與“同學(xué)性別”有關(guān);

(Ⅱ)由表格可得

由題知,而

故不存在 ,而滿(mǎn)足i的個(gè)數(shù)為3,即

當(dāng)

設(shè)從服從正態(tài)分布的總體(個(gè)體數(shù)無(wú)窮大)中任意取5個(gè)個(gè)體,其中值屬于

的個(gè)體數(shù)為Y,則,

所以,,

綜上,第②種情況出現(xiàn),所以該小組不會(huì)接受該模型.

【點(diǎn)晴】

本題考查獨(dú)立性檢驗(yàn)與正態(tài)分布的綜合應(yīng)用,涉及到正態(tài)分布的概率計(jì)算問(wèn)題,考查學(xué)生的數(shù)學(xué)運(yùn)算能力,是一道有一定難度的題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在梯形中,,點(diǎn)在線段上,且滿(mǎn)足,將沿翻折,使翻折后的二面角的余弦值為,如圖2

1)求證:;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2014年非洲爆發(fā)了埃博拉病毒疫情,在疫情結(jié)束后,當(dāng)?shù)胤酪卟块T(mén)做了一項(xiàng)回訪調(diào)查,得到如下結(jié)果,

患病

不患病

有良好衛(wèi)生習(xí)慣

20

180

無(wú)良好衛(wèi)生習(xí)慣

80

220

1)結(jié)合上面列聯(lián)表,是否有的把握認(rèn)為是否患病與衛(wèi)生習(xí)慣有關(guān)?

2)現(xiàn)從有良好衛(wèi)生習(xí)慣且不患病的180人中抽取,,5人,再?gòu)倪@5人中選兩人給市民做健康專(zhuān)題報(bào)告,求至少有一人被選中的概率.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐的底面ABCD是邊長(zhǎng)為3的正方形,平面ABCD,EPD中點(diǎn),過(guò)EB作平面分別與線段PA、PC交于點(diǎn)MN,且,則________;四邊形EMBN的面積為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正四棱錐中,是邊長(zhǎng)為3的等邊三角形,點(diǎn)M的重心,過(guò)點(diǎn)M作與平面PAC垂直的平面,平面與截面PAC交線段的長(zhǎng)度為2,則平面與正四棱椎表面交線所圍成的封閉圖形的面積可能為______________.(請(qǐng)將可能的結(jié)果序號(hào)填到橫線上)①2;②;③3; ④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正實(shí)數(shù)a,bc滿(mǎn)足a3+b3+c31

(Ⅰ)證明:a+b+ca2+b2+c22;

(Ⅱ)證明:a2b+b2c+c2a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)fx)=2sinxsinxcosx)﹣1圖象向右平移個(gè)單位得函數(shù)gx)的圖象,則下列命題中正確的是( 。

A.fx)在(,)上單調(diào)遞增

B.函數(shù)fx)的圖象關(guān)于直線x對(duì)稱(chēng)

C.gx)=2cos2x

D.函數(shù)gx)的圖象關(guān)于點(diǎn)(0)對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線 ,其焦點(diǎn)到準(zhǔn)線的距離為2,直線與拋物線交于兩點(diǎn),過(guò),分別作拋物線的切線,,交于點(diǎn).

(Ⅰ)求的值;

(Ⅱ)若,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列結(jié)論:

①下面程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的,分別為8,12,則輸出的;

②若用樣本數(shù)據(jù)0,-1,2,3來(lái)估計(jì)總體的標(biāo)準(zhǔn)差,則總體的標(biāo)準(zhǔn)差估計(jì)值為

③命題:,則的否命題是,則;

④已知正數(shù),滿(mǎn)足,則的最大值是;

⑤已知函數(shù)滿(mǎn)足,,且當(dāng)時(shí),.在區(qū)間為增函數(shù).

其中結(jié)論正確的序號(hào)是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案