【題目】某大型超市在2018年元旦舉辦了一次抽獎活動,抽獎箱里放有2個紅球,1個黃球和1個藍(lán)球(這些小球除顏色外大小形狀完全相同),從中隨機(jī)一次性取2個小球,每位顧客每次抽完獎后將球放回抽獎箱.活動另附說明如下:
①凡購物滿100(含100)元者,憑購物打印憑條可獲得一次抽獎機(jī)會;
②凡購物滿188(含188)元者,憑購物打印憑條可獲得兩次抽獎機(jī)會;
③若取得的2個小球都是紅球,則該顧客中得一等獎,獎金是一個10元的紅包;
④若取得的2個小球都不是紅球,則該顧客中得二等獎,獎金是一個5元的紅包;
⑤若取得的2個小球只有1個紅球,則該顧客中得三等獎,獎金是一個2元的紅包.
抽獎活動的組織者記錄了該超市前20位顧客的購物消費(fèi)數(shù)據(jù)(單位:元),繪制得到如圖所示的莖葉圖.
(1)求這20位顧客中獲得抽獎機(jī)會的人數(shù)與抽獎總次數(shù)(假定每位獲得抽獎機(jī)會的顧客都會去抽獎);
(2)求這20位顧客中獎得抽獎機(jī)會的顧客的購物消費(fèi)數(shù)據(jù)的中位數(shù)與平均數(shù)(結(jié)果精確到整數(shù)部分);
(3)分別求在一次抽獎中獲得紅包獎金10元,5元,2元的概率.
【答案】(1)14(2)131(3)見解析
【解析】試題分析:(1)先計算這20位顧客中獲得抽獎機(jī)會的人數(shù),再計算抽獎總次數(shù),(2)根據(jù)平均數(shù)定義求平均數(shù),從數(shù)據(jù)確定中位數(shù),(3)先確定所有結(jié)果數(shù),再根據(jù)古典概型概率公式確定對應(yīng)概率.
試題解析:解:(1)這20位顧客中獲得抽獎機(jī)會的人數(shù)為5+3+2+1=11.
這20位顧客中,有8位顧客獲得一次抽獎的機(jī)會,有3位顧客獲得兩次抽獎的機(jī)會,故共有14次抽獎機(jī)會.
(2)獲得抽獎機(jī)會的數(shù)據(jù)的中位數(shù)為110,
平均數(shù)為 .
(3)記抽獎箱里的2個紅球為紅1,紅2,從箱中隨機(jī)取2個小球的所有結(jié)果為(紅1,紅2),(紅1,藍(lán)),(紅1,黃),(紅2,藍(lán)),(紅2,黃),(藍(lán),黃),共有6個基本事件.
在一次抽獎中獲得紅包獎金10元的概率為,
獲得5元的概率為,
獲得2元的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動圓M與定圓C:x2+y2+4x=0相外切,且與直線l:x-2=0相切,則動圓M的圓心的軌跡方程為( )
A. y2-12x+12=0 B. y2+12x-12=0
C. y2+8x=0 D. y2-8x=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) .若曲線在點(diǎn)處的切線方程為(為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
某工廠生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲、乙兩種產(chǎn)品所需煤、電力、勞動力、獲得利潤及每天資源限額(最大供應(yīng)量)如表所示:
產(chǎn)品 | 甲產(chǎn)品 | 乙產(chǎn)品 | 資源限額 |
煤(t) | 9 | 4 | 360 |
電力(kw·h) | 4 | 5 | 200 |
勞力(個) | 3 | 10 | 300 |
利潤(萬元) | 7 | 12 |
問:每天生產(chǎn)甲、乙兩種產(chǎn)品各多少噸,獲得利潤總額最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線: 與拋物線: 異于原點(diǎn)的交點(diǎn)為,且拋物線在點(diǎn)處的切線與軸交于點(diǎn),拋物線在點(diǎn)處的切線與軸交于點(diǎn),與軸交于點(diǎn).
(1)若直線與拋物線交于點(diǎn), ,且,求拋物線的方程;
(2)證明: 的面積與四邊形的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,側(cè)面⊥底面,底面為直角梯形,//,,,,為的中點(diǎn).
(Ⅰ)求證:PA//平面BEF;
(Ⅱ)若PC與AB所成角為,求的長;
(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義域為,若存在常數(shù),使對一切實(shí)數(shù)均成立,則稱為“倍約束函數(shù)”現(xiàn)給出下列函數(shù):;;;是定義在實(shí)數(shù)集上的奇函數(shù),且對一切,均有其中是“倍約束函數(shù)”的序號是
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),直線經(jīng)過點(diǎn),且傾斜角為.
(1)寫出直線的參數(shù)方程和圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與圓相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB⊥AC,若AD⊥BC,則AB2=BD·BC;類似地有命題:在三棱錐A-BCD中,AD⊥平面ABC,若A點(diǎn)在平面BCD內(nèi)的射影為M,則有S=S△BCM·S△BCD.上述命題是 ( )
A. 真命題
B. 增加條件“AB⊥AC”才是真命題
C. 增加條件“M為△BCD的垂心”才是真命題
D. 增加條件“三棱錐A-BCD是正三棱錐”才是真命題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com