在公差不為0的等差數(shù)列{an}中,a1,a3,a4成等比數(shù)列,則該等比數(shù)列的公比
1
2
1
2
分析:先根據(jù)a1,a3,a4成等比數(shù)列,利用等比數(shù)列的性質(zhì),確定a1=-4d,由此可求等比數(shù)列的公比.
解答:解:由題意,設(shè)等差數(shù)列的公差為d,
∵a1,a3,a4成等比數(shù)列,
∴(a1+2d)2=a1(a1+3d),
∴a1d+4d2=0
∵d≠0
∴a1=-4d,
∴等比數(shù)列的公比q=
a3
a1
=
-2d
-4d
=
1
2

故答案為:
1
2
點(diǎn)評(píng):本題考查等差數(shù)列與等比數(shù)列的綜合,考查等差數(shù)列的通項(xiàng)、等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在公差不為0的等差數(shù)列{an}和等比數(shù)列{bn}中,已知a1=b1=1,a2=b2,a8=b3
(1)求{an}的公差d和{bn}的公比q;
(2)設(shè)cn=an+bn+2,求數(shù)列{cn}的通項(xiàng)公式cn及前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在公差不為0的等差數(shù)列{an}中,a4=10,且a3,a6,a10成等比數(shù)列.
(Ⅰ)求an的通項(xiàng)公式;
(Ⅱ)設(shè)bn=2an(n∈N*),求數(shù)列{bn}的前n項(xiàng)和公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在公差不為0的等差數(shù)列{an}中,a1,a4,a8成等比數(shù)列.
(1)已知數(shù)列{an}的前10項(xiàng)和為45,求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=
1
anan+1
,且數(shù)列{bn}的前n項(xiàng)和為Tn,若Tn=
1
9
-
1
n+9
,求數(shù)列{an}的公差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年山東省高考模擬預(yù)測(cè)卷(二)文科數(shù)學(xué)試卷(解析版) 題型:填空題

在公差不為0的等差數(shù)列成等比數(shù)列,則該等比數(shù)列的公比  .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案