下圖是一個二次函數(shù)的圖象.寫出的解集;

(2)求這個二次函數(shù)的解析式;
(3)當(dāng)實數(shù)在何范圍內(nèi)變化時,在區(qū)間 上是單調(diào)函數(shù).

(1)  (2)  (3)

解析試題分析:(1)由圖可知二次函數(shù)的零點為和1,解集為         
(2)設(shè)二次函數(shù)為,             
由點在函數(shù)圖像上,得
所以二次函數(shù)的解析式為
(3),開口向下,對稱軸為   
當(dāng),即時,上遞減
當(dāng),即時,上遞增
綜上所述
考點:二次函數(shù)求解析式及單調(diào)性
點評:解不等式需找函數(shù)圖象在x軸上方的部分,二次函數(shù)的單調(diào)性以對稱軸為界,在對稱軸的兩側(cè)分別為函數(shù)的增區(qū)間和減區(qū)間

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時,
(1)寫出函數(shù)的解析式;
(2)若函數(shù),求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

將邊長為的一塊正方形鐵皮的四角各截去一個大小相同的小正方形,然后將四邊折起做成一個無蓋的方盒.欲使所得的方盒有最大容積,截去的小正方形的邊長應(yīng)為多少?方盒的最大容積為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=若不建隔熱層(即x=0時),每年能源消耗費用為8萬元.設(shè)f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值;
(2)求f(x)的表達(dá)式;
(3)利用“函數(shù)(其中為大于0的常數(shù)),在上是減函數(shù),在上是增函數(shù)”這一性質(zhì),求隔熱層修建多厚時,總費用f(x)達(dá)到最小,并求出這個最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在邊長為60cm的正方形鐵皮的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底箱子,箱底邊長為多少時,箱子容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

水庫的蓄水量隨時間而變化,現(xiàn)用表示時間,以月為單位,年初為起點,根據(jù)歷年數(shù)據(jù),某水庫的蓄水量(單位:億立方米)關(guān)于的近似函數(shù)關(guān)系式為:

(1)該水庫的蓄水量小于50的時期稱為枯水期,以表示第月份(),問:同一年內(nèi)哪些月份是枯水期?
(2)求一年內(nèi)哪個月份該水庫的蓄水量最大,并求最大蓄水量。(取計算)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一家報刊推銷員從報社買進(jìn)報紙的價格是每份0.20元,賣出的價格是每份0.30元,賣不完的還可以以每份0.08元的價格退回報社.在一個月(以30天計算)有20天每天可賣出400份,其余10天只能賣250份,但每天從報社買進(jìn)報紙的份數(shù)都相同,問應(yīng)該從報社買多少份才能使每月所獲得的利潤最大?并計算每月最多能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時耗油量y(升)關(guān)于行駛速度x(千米/小時)的函數(shù)解析式可以表示為:.已知甲、乙兩地相距100千米。
(1)當(dāng)汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(2)當(dāng)汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一變壓器的鐵芯截面為正十字型,為保證所需的磁通量,要求十字應(yīng)具有 的面積,問應(yīng)如何設(shè)計十字型寬及長,才能使其外接圓的周長最短,這樣可使繞在鐵芯上的銅線最節(jié)。

查看答案和解析>>

同步練習(xí)冊答案