如圖所示,已知AB⊥平面BCD,M、N分別是AC、AD的中點,BC⊥CD.
(1)求證:MN∥平面BCD;
(2)求證:平面BCD⊥平面ABC;
(3)若AB=1,BC=
3
,求直線AC與平面BCD所成的角.
分析:(1)因為M,N分別是AC,AD的中點,所以MN∥CD.由此能夠證明MN∥平面BCD.
(2)因為AB⊥平面BCD,CD?平面BCD,所以AB⊥CD.因為CD⊥BC且AB∩BC=B,所以CD⊥平面ABC.由此能夠證明平面BCD⊥平面ABC.
(3)因為AB⊥平面BCD,所以∠ACB為直線AC與平面BCD所成的角.由此能夠求出直線AC與平面BCD所成的角.
解答:解:(1)∵M,N分別是AC,AD的中點,
∴MN∥CD.
∵MN?平面BCD且CD?平面BCD,
∴MN∥平面BCD.
(2)∵AB⊥平面BCD,CD?平面BCD,
∴AB⊥CD.
∵CD⊥BC且AB∩BC=B,
∴CD⊥平面ABC.
∵CD?平面BCD,
∴平面BCD⊥平面ABC.
(3)∵AB⊥平面BCD,
∴∠ACB為直線AC與平面BCD所成的角. 
在直角△ABC中,AB=1,BC=
3

tan∠ACB=
AB
BC
=
3
3

∴∠ACB=30°.
故直線AC與平面BCD所成的角為30°.
點評:本題考查直線與平面平行、平面與平面垂直的證明,考查直線與平面所成角的求法.解題時要認真審題,仔細解答,注意合理地化立體問題為平面問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

4、如圖所示,已知AB⊥平面BCD,BC⊥CD,則圖中互相垂直的平面有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A:如圖所示,已知AB為⊙O的直徑,AC為弦,OD∥BC,交AC于點D,BC=4cm,
(1)試判斷OD與AC的關系;
(2)求OD的長;
(3)若2sinA-1=0,求⊙O的直徑.
B:(選修4-4)已知直線l經(jīng)過點P(1,1),傾斜角α=
4

(1)寫出直線l的參數(shù)方程;
(2)設l與圓x2+y2=4相交于兩點A、B,求點P到A、B兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一次機器人足球比賽中,甲隊1號機器人由點A開始作勻速直線運動,到達點B時,發(fā)現(xiàn)足球在點D處正以2倍于自己的速度向點A作勻速直線滾動.如圖所示,已知AB=4
2
dm,AD=17dm,∠BAC=45°
.若忽略機器人原地旋轉(zhuǎn)所需的時間,則該機器人最快可在何處截住足球?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,已知
AB
=2
BC
OA
=
a
,
OB
=
b
,
OC
=
c
,則
c
=
 
.(用
a
,
b
表示)

查看答案和解析>>

同步練習冊答案