若直線ax+by=4與⊙C:x2+y2=4無交點,則點P(a,b)與⊙C的位置關(guān)系是( 。
A、P在⊙C上B、P在⊙C內(nèi)
C、P在⊙C外D、不確定
考點:直線與圓的位置關(guān)系
專題:直線與圓
分析:由題意得,圓心(0,0)到直線ax+by=4 的距離大于半徑,得到 a2+b2<4,故點P(a,b)在圓內(nèi)
解答: 解:∵直線ax+by=4與圓x2+y2=4無交點,
∴圓心(0,0)到直線ax+by=4 的距離大于半徑,
d=
|4|
a2+b2
>2

∴a2+b2<4,
∴點P(a,b)在圓內(nèi).
故選 B.
點評:本題考查點到直線的距離公式,以及點與圓的位置關(guān)系的判定方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1x2+y2=1,圓C1x2+y2-2x-2y+1=0,則兩圓的公共弦所在的直線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2+2x+6y+9=0與圓x2+y2-6x+2y+1=0的位置關(guān)系是( 。
A、相交B、外切C、相離D、內(nèi)切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若以下面各組數(shù)為三角形的三邊,能構(gòu)成鈍角角三角形的是(  )
A、1、2、3
B、30、40、50
C、2、2、3
D、5、5、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
y2
a2
-
x2
b2
=1
與橢圓
x2
4
+
y2
5
=1
共頂點,且焦距是6,此雙曲線的漸近線是( 。
A、y=±
5
3
x
B、y=±
5
2
x
C、y=±
3
5
5
x
D、y=±
2
5
5
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1=2,an+1=
2
an+1
,bn=|
an+2
an-1
|
,n∈N+,則數(shù)列{bn}的通項公式bn為(  )
A、2n
B、2n-1
C、2n-1+1
D、2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2 是橢圓
x2
16
+
y2
12
=1
的兩個焦點,P是橢圓上的一點,且P到兩焦點的距離之差為2,則△PF1F2是( 。
A、直角三角形B、銳角三角形
C、斜三角形D、鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+(y+1)2=3繞直線y=kx-1旋轉(zhuǎn)一周所得的幾何體的體積為( 。
A、36π
B、12π
C、4
3
π
D、4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l1的傾斜角45°,直線l2在x軸截距為
3
,且l1∥l2,則直線l2的方程是
 

查看答案和解析>>

同步練習(xí)冊答案