【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線經(jīng)過伸縮變換后得到曲線.在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;
(2)已知點(diǎn)是曲線上的任意一點(diǎn),求點(diǎn)到直線的距離的最大值和最小值.
【答案】(1)為圓心在原點(diǎn),半徑為2的圓, (2)取到最小值為最大值為
【解析】試題分析:(1)利用三角恒等式消元法消去參數(shù)可得曲線的普通方程,再利用放縮公式可得曲線方程,從而可判定是哪一種曲線,利用極坐標(biāo)護(hù)互化公式可得的方程化為極坐標(biāo)方程;(2)利用的參數(shù)方程設(shè)出點(diǎn)的坐標(biāo),利用點(diǎn)到直線距離公式、輔助角公式及三角函數(shù)的有界性可得結(jié)果.
試題解析:(1)因?yàn)榍的參數(shù)方程為(為參數(shù)),
因?yàn)?/span>,則曲線的參數(shù)方程.
所以的普通方程為.
所以為圓心在原點(diǎn),半徑為2的圓.
所以的極坐標(biāo)方程為,即.
(2)解法:直線的普通方程為.
曲線上的點(diǎn)到直線的距離.
當(dāng)即時(shí), 取到最小值為.
當(dāng)即時(shí), 取到最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)地區(qū)共有5個(gè)鄉(xiāng)鎮(zhèn),共30萬人,其人口比例為3∶2∶5∶2∶3,從這30萬人中抽取一個(gè)300人的樣本,分析某種疾病的發(fā)病率.已知這種疾病與不同的地理位置及水土有關(guān),則應(yīng)采取什么樣的抽樣方法?并寫出具體過程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省電視臺(tái)為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個(gè)城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示,其中一個(gè)數(shù)字被污損.
(I)求東部觀眾平均人數(shù)超過西部觀眾平均人數(shù)的概率.
(II)節(jié)目的播出極大激發(fā)了觀眾隨機(jī)統(tǒng)計(jì)了4位觀眾的周均學(xué)習(xí)成語知識(shí)的的時(shí)間y (單位:小時(shí))與年齡x(單位:歲),并制作了對(duì)照表(如下表所示):
由表中數(shù)據(jù)分析,x,y呈線性相關(guān)關(guān)系,試求線性回歸方程,并預(yù)測(cè)年齡為60歲觀眾周均學(xué)習(xí)成語知識(shí)的時(shí)間.
參考數(shù)據(jù):線性回歸方程中的最小二乘估計(jì)分別是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,底面是等腰直角三角形, ,側(cè)棱,點(diǎn)分別為棱的中點(diǎn), 的重心為,直線垂直于平面.
(1)求證:直線平面;
(2)求二面角的余弦.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線經(jīng)過伸縮變換后得到曲線.在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;
(2)已知點(diǎn)是曲線上的任意一點(diǎn),求點(diǎn)到直線的距離的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)的左、右焦點(diǎn)分別為F1,F2,P為橢圓上一點(diǎn)(在x軸上方),連結(jié)PF1并延長(zhǎng)交橢圓于另一點(diǎn)Q,設(shè)=λ.
(1)若點(diǎn)P的坐標(biāo)為(1,),且△PQF2的周長(zhǎng)為8,求橢圓C的方程;
(2)若PF2垂直于x軸,且橢圓C的離心率e∈[,],求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位計(jì)劃在一水庫建一座至多安裝3臺(tái)發(fā)電機(jī)的水電站,過去50年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和,單位:億立方米)都在40以上,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨(dú)立.
(1)求未來3年中,設(shè)表示流量超過120的年數(shù),求的分布列及期望;
(2)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每年發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)受年入流量限制,并有如下關(guān)系:
年入流量 | |||
發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù) | 1 | 2 | 3 |
若某臺(tái)發(fā)電機(jī)運(yùn)行,則該臺(tái)年利潤(rùn)為5000萬元,若某臺(tái)發(fā)電機(jī)未運(yùn)行,則該臺(tái)年虧損800萬元,欲使水電站年總利潤(rùn)的均值達(dá)到最大,應(yīng)安裝發(fā)電機(jī)多少臺(tái)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.
(1)求證:平面ABC⊥平面ACD;
(2)若E為AB中點(diǎn),求點(diǎn)A到平面CED的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com