【題目】已知,且,設(shè)命題p:函數(shù)上單調(diào)遞減;命題q:函數(shù) 上為增函數(shù),

1)若“pq”為真,求實(shí)數(shù)c的取值范圍

2)若“pq”為假,“pq”為真,求實(shí)數(shù)c的取值范圍.

【答案】(1);(2

【解析】試題分析:(1)∵函數(shù)y=cx在R上單調(diào)遞減,∴0<c<1,即p:0<c<1

又∵f(x)=x2-2cx+1在上為增函數(shù),∴c≤,即q: .

∴“p且q”為真時(shí),求交集即得解(2)“p或q”為真,“p且q”為假,則p真q假或p假q真.由(1)得p:0<c<1,q: .∵c>0且c≠1,∴ p: c>1, q 且c≠1.

分兩種情況進(jìn)行求解最后求并集即可.

試題解析:

1∵函數(shù)y=cx在R上單調(diào)遞減,∴0<c<1,即p:0<c<1

又∵f(x)=x2-2cx+1在上為增函數(shù),∴c≤,即q: .

∴“p且q”為真時(shí),

2∵c>0且c≠1,∴ p: c>1, q 且c≠1.

又∵“p或q”為真,“p且q”為假,∴p真q假或p假q真.

當(dāng)p真,q假時(shí),{c|0<c<1}∩{c | ,且c≠1}={c| <c<1}

當(dāng)p假,q真時(shí),{c|c>1}∩{c|0<c≤ }.

綜上所述,實(shí)數(shù)c的取值范圍是{c| <c<1}

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 ,向量 ,函數(shù)f(x)=
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象上所有點(diǎn)向右平行移動(dòng) 個(gè)單位長(zhǎng)度,得函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間[0,π]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了引導(dǎo)居民合理用水,居民生活用水實(shí)行二級(jí)階梯式水價(jià)計(jì)量辦法,具體如下:第一階梯,每戶居民月用水量不超過(guò)12噸,價(jià)格為4元/噸;第二階梯,每戶居民月用水量超過(guò)12噸,超過(guò)部分的價(jià)格為8元/噸.為了了解全市居民月用水量的分布情況,通過(guò)抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成8組,制成了如圖1所示的頻率分布直方圖.

(圖1) (圖2)

(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;

(Ⅱ)通過(guò)頻率分布直方圖,估計(jì)該市居民每月的用水量的中位數(shù)的值(保留兩位小數(shù));

(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費(fèi)(元)與月份的散點(diǎn)圖,其擬合的線性回歸方程是. 若張某2016年1~7月份水費(fèi)總支出為312元,試估計(jì)張某7月份的用水噸數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)m個(gè)正數(shù)a1 , a2 , …,am(m≥4,m∈N*)依次圍成一個(gè)圓圈.其中a1 , a2 , a3 , …ak1 , ak(k<m,k∈N*)是公差為d的等差數(shù)列,而a1 , am , am1 , …,ak+1 , ak是公比為2的等比數(shù)列.
(1)若a1=d=2,k=8,求數(shù)列a1 , a2 , …,am的所有項(xiàng)的和Sm;
(2)若a1=d=2,m<2015,求m的最大值;
(3)是否存在正整數(shù)k,滿足a1+a2+…+ak1+ak=3(ak+1+ak+2+…+am1+am)?若存在,求出k值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】寶寶的健康成長(zhǎng)是媽媽們最關(guān)心的問(wèn)題,父母親為嬰兒選擇什么品牌的奶粉一直以來(lái)都是育嬰中的一個(gè)重要話題,為了解過(guò)程奶粉的知名度和消費(fèi)者的信任度,某調(diào)查小組特別調(diào)查記錄了某大型連鎖超市2015年與2016年這兩年銷售量前5名的五個(gè)品牌奶粉的銷量(單位:罐),繪制如下的管狀圖:

(1)根據(jù)給出的這兩年銷量的管狀圖,對(duì)該超市這兩年品牌奶粉銷量的前五強(qiáng)進(jìn)行排名;

(2)分別計(jì)算這5個(gè)品牌奶粉2016年所占總銷量(僅指這5個(gè)品牌奶粉的總銷量)的百分比(百分?jǐn)?shù)精確到各位),并將數(shù)據(jù)填入如下餅狀圖中的括號(hào)內(nèi);

(3)試以(2)中的百分比作為概率,若隨機(jī)選取2名購(gòu)買這5個(gè)品牌中任意1個(gè)品牌的消費(fèi)者進(jìn)行采訪,記為被采訪中購(gòu)買飛鶴奶粉的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c. ,且
(Ⅰ)求A的大小;
(Ⅱ)若a=1, .求SABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱臺(tái)中, 分別是棱長(zhǎng)為1與2的正三角形,平面平面,四邊形為直角梯形, , 中點(diǎn), , ).

(1)設(shè)中點(diǎn)為, ,求證: 平面;

(2)若到平面的距離為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,EBC的中點(diǎn),F在棱AC上,且AF=3FC

(1)求三棱錐D-ABC的體積

(2)求證:平面DAC⊥平面DEF;

(3)若MDB中點(diǎn),N在棱AC上,且CN=CA,求證:MN∥平面DEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線)與軸交于點(diǎn),動(dòng)圓與直線相切,并且與圓相外切,

1)求動(dòng)圓的圓心的軌跡的方程;

2)若過(guò)原點(diǎn)且傾斜角為的直線與曲線交于兩點(diǎn),問(wèn)是否存在以為直徑的圓經(jīng)過(guò)點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案