已知函數(shù)f(x)=|x-2|,g(x)=-|x+3|+m.
(1)解關(guān)于x的不等式f(x)+a-1>0(a∈R);
(2)若函數(shù)f(x)的圖象恒在函數(shù)g(x)圖象的上方,求m的取值范圍.
【答案】分析:(1)不等式轉(zhuǎn)化為|x-2|+|a-1>0,對參數(shù)a進(jìn)行分類討論,分類解不等式;
(2)函數(shù)f(x)的圖象恒在函數(shù)g(x)圖象的上方,可轉(zhuǎn)化為不等式|x-2|+|x+3|>m恒成立,利用不等式的性質(zhì)求出|x-2|+|x+3|的最小值,就可以求出m的范圍.
解答:解:(Ⅰ)不等式f(x)+a-1>0即為|x-2|+a-1>0,
當(dāng)a=1時(shí),解集為x≠2,即(-∞,2)∪(2,+∞);
當(dāng)a>1時(shí),解集為全體實(shí)數(shù)R;
當(dāng)a<1時(shí),解集為(-∞,a+1)∪(3-a,+∞).
(Ⅱ)f(x)的圖象恒在函數(shù)g(x)圖象的上方,即為|x-2|>-|x+3|+m對任意實(shí)數(shù)x恒成立,
即|x-2|+|x+3|>m恒成立,(7分)
又由不等式的性質(zhì),對任意實(shí)數(shù)x恒有|x-2|+|x+3|≥|(x-2)-(x+3)|=5,于是得m<5,
故m的取值范圍是(-∞,5).
點(diǎn)評:本題考查絕對值不等式的解法,分類討論的方法,以及不等式的性質(zhì),涉及面較廣,知識性較強(qiáng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案